Newer
Older
// SPDX-License-Identifier: GPL-2.0+
* Driver for Motorola/Freescale IMX serial ports
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
* Author: Sascha Hauer <sascha@saschahauer.de>
* Copyright (C) 2004 Pengutronix
*/
#if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/platform_device.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_data/serial-imx.h>
#include <linux/platform_data/dma-imx.h>
Uwe Kleine-König
committed
#include "serial_mctrl_gpio.h"
/* Register definitions */
#define URXD0 0x0 /* Receiver Register */
#define URTX0 0x40 /* Transmitter Register */
#define UCR1 0x80 /* Control Register 1 */
#define UCR2 0x84 /* Control Register 2 */
#define UCR3 0x88 /* Control Register 3 */
#define UCR4 0x8c /* Control Register 4 */
#define UFCR 0x90 /* FIFO Control Register */
#define USR1 0x94 /* Status Register 1 */
#define USR2 0x98 /* Status Register 2 */
#define UESC 0x9c /* Escape Character Register */
#define UTIM 0xa0 /* Escape Timer Register */
#define UBIR 0xa4 /* BRM Incremental Register */
#define UBMR 0xa8 /* BRM Modulator Register */
#define UBRC 0xac /* Baud Rate Count Register */
#define IMX21_ONEMS 0xb0 /* One Millisecond register */
#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
/* UART Control Register Bit Fields.*/
#define URXD_CHARRDY (1<<15)
#define URXD_ERR (1<<14)
#define URXD_OVRRUN (1<<13)
#define URXD_FRMERR (1<<12)
#define URXD_BRK (1<<11)
#define URXD_PRERR (1<<10)
#define UCR1_ADEN (1<<15) /* Auto detect interrupt */
#define UCR1_ADBR (1<<14) /* Auto detect baud rate */
#define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */
#define UCR1_IDEN (1<<12) /* Idle condition interrupt */
#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
#define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */
#define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */
#define UCR1_IREN (1<<7) /* Infrared interface enable */
#define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */
#define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */
#define UCR1_SNDBRK (1<<4) /* Send break */
#define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */
#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
#define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */
#define UCR1_DOZE (1<<1) /* Doze */
#define UCR1_UARTEN (1<<0) /* UART enabled */
#define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */
#define UCR2_IRTS (1<<14) /* Ignore RTS pin */
#define UCR2_CTSC (1<<13) /* CTS pin control */
#define UCR2_CTS (1<<12) /* Clear to send */
#define UCR2_ESCEN (1<<11) /* Escape enable */
#define UCR2_PREN (1<<8) /* Parity enable */
#define UCR2_PROE (1<<7) /* Parity odd/even */
#define UCR2_STPB (1<<6) /* Stop */
#define UCR2_WS (1<<5) /* Word size */
#define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */
#define UCR2_ATEN (1<<3) /* Aging Timer Enable */
#define UCR2_TXEN (1<<2) /* Transmitter enabled */
#define UCR2_RXEN (1<<1) /* Receiver enabled */
#define UCR2_SRST (1<<0) /* SW reset */
#define UCR3_DTREN (1<<13) /* DTR interrupt enable */
#define UCR3_PARERREN (1<<12) /* Parity enable */
#define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */
#define UCR3_DSR (1<<10) /* Data set ready */
#define UCR3_DCD (1<<9) /* Data carrier detect */
#define UCR3_RI (1<<8) /* Ring indicator */
#define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */
#define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */
#define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */
#define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */
#define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */
#define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */
#define UCR3_INVT (1<<1) /* Inverted Infrared transmission */
#define UCR3_BPEN (1<<0) /* Preset registers enable */
#define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */
#define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */
#define UCR4_INVR (1<<9) /* Inverted infrared reception */
#define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */
#define UCR4_WKEN (1<<7) /* Wake interrupt enable */
#define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */
#define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */
#define UCR4_IRSC (1<<5) /* IR special case */
#define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */
#define UCR4_BKEN (1<<2) /* Break condition interrupt enable */
#define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */
#define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */
#define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */
#define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */
#define UFCR_RFDIV (7<<7) /* Reference freq divider mask */
#define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7)
#define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */
#define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */
#define USR1_RTSS (1<<14) /* RTS pin status */
#define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */
#define USR1_RTSD (1<<12) /* RTS delta */
#define USR1_ESCF (1<<11) /* Escape seq interrupt flag */
#define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */
#define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */
#define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */
#define USR1_DTRD (1<<7) /* DTR Delta */
#define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */
#define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */
#define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */
#define USR2_ADET (1<<15) /* Auto baud rate detect complete */
#define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */
#define USR2_DTRF (1<<13) /* DTR edge interrupt flag */
#define USR2_IDLE (1<<12) /* Idle condition */
#define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */
#define USR2_RIIN (1<<9) /* Ring Indicator Input */
#define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */
#define USR2_WAKE (1<<7) /* Wake */
#define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */
#define USR2_RTSF (1<<4) /* RTS edge interrupt flag */
#define USR2_TXDC (1<<3) /* Transmitter complete */
#define USR2_BRCD (1<<2) /* Break condition */
#define USR2_ORE (1<<1) /* Overrun error */
#define USR2_RDR (1<<0) /* Recv data ready */
#define UTS_FRCPERR (1<<13) /* Force parity error */
#define UTS_LOOP (1<<12) /* Loop tx and rx */
#define UTS_TXEMPTY (1<<6) /* TxFIFO empty */
#define UTS_RXEMPTY (1<<5) /* RxFIFO empty */
#define UTS_TXFULL (1<<4) /* TxFIFO full */
#define UTS_RXFULL (1<<3) /* RxFIFO full */
#define UTS_SOFTRST (1<<0) /* Software reset */
/* We've been assigned a range on the "Low-density serial ports" major */
#define SERIAL_IMX_MAJOR 207
#define MINOR_START 16
#define DEV_NAME "ttymxc"
/*
* This determines how often we check the modem status signals
* for any change. They generally aren't connected to an IRQ
* so we have to poll them. We also check immediately before
* filling the TX fifo incase CTS has been dropped.
*/
#define MCTRL_TIMEOUT (250*HZ/1000)
#define DRIVER_NAME "IMX-uart"
/* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
enum imx_uart_type {
IMX1_UART,
IMX21_UART,
};
/* device type dependent stuff */
struct imx_uart_data {
unsigned uts_reg;
enum imx_uart_type devtype;
};
struct imx_port {
struct uart_port port;
struct timer_list timer;
unsigned int old_status;
unsigned int have_rtsgpio:1;
struct clk *clk_ipg;
struct clk *clk_per;
const struct imx_uart_data *devdata;
Uwe Kleine-König
committed
struct mctrl_gpios *gpios;
/* shadow registers */
unsigned int ucr1;
unsigned int ucr2;
unsigned int ucr3;
unsigned int ucr4;
unsigned int ufcr;
/* DMA fields */
unsigned int dma_is_enabled:1;
unsigned int dma_is_rxing:1;
unsigned int dma_is_txing:1;
struct dma_chan *dma_chan_rx, *dma_chan_tx;
struct scatterlist rx_sgl, tx_sgl[2];
void *rx_buf;
struct circ_buf rx_ring;
unsigned int rx_periods;
dma_cookie_t rx_cookie;
unsigned int tx_bytes;
unsigned int saved_reg[10];
bool context_saved;
struct imx_port_ucrs {
unsigned int ucr1;
unsigned int ucr2;
unsigned int ucr3;
};
static struct imx_uart_data imx_uart_devdata[] = {
[IMX1_UART] = {
.uts_reg = IMX1_UTS,
.devtype = IMX1_UART,
},
[IMX21_UART] = {
.uts_reg = IMX21_UTS,
.devtype = IMX21_UART,
},
[IMX53_UART] = {
.uts_reg = IMX21_UTS,
.devtype = IMX53_UART,
},
[IMX6Q_UART] = {
.uts_reg = IMX21_UTS,
.devtype = IMX6Q_UART,
},
static const struct platform_device_id imx_uart_devtype[] = {
{
.name = "imx1-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
}, {
.name = "imx21-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
}, {
.name = "imx53-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
}, {
.name = "imx6q-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
static const struct of_device_id imx_uart_dt_ids[] = {
{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
{
switch (offset) {
case UCR1:
sport->ucr1 = val;
break;
case UCR2:
sport->ucr2 = val;
break;
case UCR3:
sport->ucr3 = val;
break;
case UCR4:
sport->ucr4 = val;
break;
case UFCR:
sport->ufcr = val;
break;
default:
break;
}
writel(val, sport->port.membase + offset);
}
static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
{
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
switch (offset) {
case UCR1:
return sport->ucr1;
break;
case UCR2:
/*
* UCR2_SRST is the only bit in the cached registers that might
* differ from the value that was last written. As it only
* clears after being set, reread conditionally.
*/
if (sport->ucr2 & UCR2_SRST)
sport->ucr2 = readl(sport->port.membase + offset);
return sport->ucr2;
break;
case UCR3:
return sport->ucr3;
break;
case UCR4:
return sport->ucr4;
break;
case UFCR:
return sport->ufcr;
break;
default:
return readl(sport->port.membase + offset);
}
static inline unsigned uts_reg(struct imx_port *sport)
{
return sport->devdata->uts_reg;
}
static inline int is_imx1_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX1_UART;
}
static inline int is_imx21_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX21_UART;
}
static inline int is_imx53_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX53_UART;
}
static inline int is_imx6q_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX6Q_UART;
}
fabio.estevam@freescale.com
committed
/*
* Save and restore functions for UCR1, UCR2 and UCR3 registers
*/
#if defined(CONFIG_SERIAL_IMX_CONSOLE)
static void imx_port_ucrs_save(struct imx_port *sport,
fabio.estevam@freescale.com
committed
struct imx_port_ucrs *ucr)
{
/* save control registers */
ucr->ucr1 = imx_uart_readl(sport, UCR1);
ucr->ucr2 = imx_uart_readl(sport, UCR2);
ucr->ucr3 = imx_uart_readl(sport, UCR3);
fabio.estevam@freescale.com
committed
}
static void imx_port_ucrs_restore(struct imx_port *sport,
fabio.estevam@freescale.com
committed
struct imx_port_ucrs *ucr)
{
/* restore control registers */
imx_uart_writel(sport, ucr->ucr1, UCR1);
imx_uart_writel(sport, ucr->ucr2, UCR2);
imx_uart_writel(sport, ucr->ucr3, UCR3);
fabio.estevam@freescale.com
committed
}
fabio.estevam@freescale.com
committed
static void imx_port_rts_active(struct imx_port *sport, u32 *ucr2)
Uwe Kleine-König
committed
{
*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
Uwe Kleine-König
committed
sport->port.mctrl |= TIOCM_RTS;
mctrl_gpio_set(sport->gpios, sport->port.mctrl);
Uwe Kleine-König
committed
}
static void imx_port_rts_inactive(struct imx_port *sport, u32 *ucr2)
Uwe Kleine-König
committed
{
*ucr2 &= ~UCR2_CTSC;
*ucr2 |= UCR2_CTS;
Uwe Kleine-König
committed
sport->port.mctrl &= ~TIOCM_RTS;
mctrl_gpio_set(sport->gpios, sport->port.mctrl);
Uwe Kleine-König
committed
}
static void imx_port_rts_auto(struct imx_port *sport, u32 *ucr2)
Uwe Kleine-König
committed
{
*ucr2 |= UCR2_CTSC;
}
/* called with port.lock taken and irqs off */
static void imx_stop_tx(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
u32 ucr1;
/*
* We are maybe in the SMP context, so if the DMA TX thread is running
* on other cpu, we have to wait for it to finish.
*/
if (sport->dma_is_txing)
ucr1 = imx_uart_readl(sport, UCR1);
imx_uart_writel(sport, ucr1 & ~UCR1_TXMPTYEN, UCR1);
/* in rs485 mode disable transmitter if shifter is empty */
if (port->rs485.flags & SER_RS485_ENABLED &&
imx_uart_readl(sport, USR2) & USR2_TXDC) {
u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4;
if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
imx_port_rts_active(sport, &ucr2);
imx_port_rts_inactive(sport, &ucr2);
ucr2 |= UCR2_RXEN;
imx_uart_writel(sport, ucr2, UCR2);
ucr4 = imx_uart_readl(sport, UCR4);
ucr4 &= ~UCR4_TCEN;
imx_uart_writel(sport, ucr4, UCR4);
/* called with port.lock taken and irqs off */
static void imx_stop_rx(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
u32 ucr1, ucr2;
ucr2 = imx_uart_readl(sport, UCR2);
imx_uart_writel(sport, ucr2 & ~UCR2_RXEN, UCR2);
/* disable the `Receiver Ready Interrrupt` */
ucr1 = imx_uart_readl(sport, UCR1);
imx_uart_writel(sport, ucr1 & ~UCR1_RRDYEN, UCR1);
/* called with port.lock taken and irqs off */
static void imx_enable_ms(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
mod_timer(&sport->timer, jiffies);
Uwe Kleine-König
committed
mctrl_gpio_enable_ms(sport->gpios);
static void imx_dma_tx(struct imx_port *sport);
/* called with port.lock taken and irqs off */
static inline void imx_transmit_buffer(struct imx_port *sport)
{
if (sport->port.x_char) {
/* Send next char */
imx_uart_writel(sport, sport->port.x_char, URTX0);
sport->port.icount.tx++;
sport->port.x_char = 0;
return;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
imx_stop_tx(&sport->port);
return;
}
if (sport->dma_is_enabled) {
u32 ucr1;
/*
* We've just sent a X-char Ensure the TX DMA is enabled
* and the TX IRQ is disabled.
**/
ucr1 = imx_uart_readl(sport, UCR1);
ucr1 &= ~UCR1_TXMPTYEN;
if (sport->dma_is_txing) {
ucr1 |= UCR1_TXDMAEN;
imx_uart_writel(sport, ucr1, UCR1);
imx_uart_writel(sport, ucr1, UCR1);
imx_dma_tx(sport);
}
Uwe Kleine-König
committed
}
while (!uart_circ_empty(xmit) &&
!(imx_uart_readl(sport, uts_reg(sport)) & UTS_TXFULL)) {
/* send xmit->buf[xmit->tail]
* out the port here */
imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
imx_stop_tx(&sport->port);
static void dma_tx_callback(void *data)
{
struct imx_port *sport = data;
struct scatterlist *sgl = &sport->tx_sgl[0];
struct circ_buf *xmit = &sport->port.state->xmit;
unsigned long flags;
u32 ucr1;
spin_lock_irqsave(&sport->port.lock, flags);
dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
ucr1 = imx_uart_readl(sport, UCR1);
ucr1 &= ~UCR1_TXDMAEN;
imx_uart_writel(sport, ucr1, UCR1);
/* update the stat */
xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
sport->port.icount.tx += sport->tx_bytes;
dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
sport->dma_is_txing = 0;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
imx_dma_tx(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
/* called with port.lock taken and irqs off */
static void imx_dma_tx(struct imx_port *sport)
{
struct circ_buf *xmit = &sport->port.state->xmit;
struct scatterlist *sgl = sport->tx_sgl;
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan = sport->dma_chan_tx;
struct device *dev = sport->port.dev;
u32 ucr1;
if (sport->dma_is_txing)
return;
sport->tx_bytes = uart_circ_chars_pending(xmit);
if (xmit->tail < xmit->head) {
sport->dma_tx_nents = 1;
sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
} else {
sport->dma_tx_nents = 2;
sg_init_table(sgl, 2);
sg_set_buf(sgl, xmit->buf + xmit->tail,
UART_XMIT_SIZE - xmit->tail);
sg_set_buf(sgl + 1, xmit->buf, xmit->head);
}
ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
if (ret == 0) {
dev_err(dev, "DMA mapping error for TX.\n");
return;
}
desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!desc) {
dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
DMA_TO_DEVICE);
dev_err(dev, "We cannot prepare for the TX slave dma!\n");
return;
}
desc->callback = dma_tx_callback;
desc->callback_param = sport;
dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
uart_circ_chars_pending(xmit));
ucr1 = imx_uart_readl(sport, UCR1);
ucr1 |= UCR1_TXDMAEN;
imx_uart_writel(sport, ucr1, UCR1);
/* fire it */
sport->dma_is_txing = 1;
dmaengine_submit(desc);
dma_async_issue_pending(chan);
return;
}
/* called with port.lock taken and irqs off */
static void imx_start_tx(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
u32 ucr1;
if (port->rs485.flags & SER_RS485_ENABLED) {
u32 ucr2, ucr4;
ucr2 = imx_uart_readl(sport, UCR2);
if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
imx_port_rts_active(sport, &ucr2);
imx_port_rts_inactive(sport, &ucr2);
if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
ucr2 &= ~UCR2_RXEN;
imx_uart_writel(sport, ucr2, UCR2);
Uwe Kleine-König
committed
/* enable transmitter and shifter empty irq */
ucr4 = imx_uart_readl(sport, UCR4);
ucr4 |= UCR4_TCEN;
imx_uart_writel(sport, ucr4, UCR4);
ucr1 = imx_uart_readl(sport, UCR1);
imx_uart_writel(sport, ucr1 | UCR1_TXMPTYEN, UCR1);
if (sport->port.x_char) {
/* We have X-char to send, so enable TX IRQ and
* disable TX DMA to let TX interrupt to send X-char */
ucr1 = imx_uart_readl(sport, UCR1);
ucr1 &= ~UCR1_TXDMAEN;
ucr1 |= UCR1_TXMPTYEN;
imx_uart_writel(sport, ucr1, UCR1);
if (!uart_circ_empty(&port->state->xmit) &&
!uart_tx_stopped(port))
imx_dma_tx(sport);
static irqreturn_t imx_rtsint(int irq, void *dev_id)
struct imx_port *sport = dev_id;
u32 usr1;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
imx_uart_writel(sport, USR1_RTSD, USR1);
usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
uart_handle_cts_change(&sport->port, !!usr1);
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
spin_unlock_irqrestore(&sport->port.lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t imx_txint(int irq, void *dev_id)
struct imx_port *sport = dev_id;
spin_lock_irqsave(&sport->port.lock, flags);
spin_unlock_irqrestore(&sport->port.lock, flags);
static irqreturn_t imx_rxint(int irq, void *dev_id)
unsigned int rx, flg, ignored = 0;
struct tty_port *port = &sport->port.state->port;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
while (imx_uart_readl(sport, USR2) & USR2_RDR) {
u32 usr2;
rx = imx_uart_readl(sport, URXD0);
usr2 = imx_uart_readl(sport, USR2);
if (usr2 & USR2_BRCD) {
imx_uart_writel(sport, USR2_BRCD, USR2);
if (uart_handle_break(&sport->port))
continue;
if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
continue;
if (unlikely(rx & URXD_ERR)) {
if (rx & URXD_BRK)
sport->port.icount.brk++;
else if (rx & URXD_PRERR)
sport->port.icount.parity++;
else if (rx & URXD_FRMERR)
sport->port.icount.frame++;
if (rx & URXD_OVRRUN)
sport->port.icount.overrun++;
if (rx & sport->port.ignore_status_mask) {
if (++ignored > 100)
goto out;
continue;
}
rx &= (sport->port.read_status_mask | 0xFF);
if (rx & URXD_BRK)
flg = TTY_BREAK;
else if (rx & URXD_PRERR)
flg = TTY_PARITY;
else if (rx & URXD_FRMERR)
flg = TTY_FRAME;
if (rx & URXD_OVRRUN)
flg = TTY_OVERRUN;
#ifdef SUPPORT_SYSRQ
sport->port.sysrq = 0;
#endif
}
if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
goto out;
if (tty_insert_flip_char(port, rx, flg) == 0)
sport->port.icount.buf_overrun++;
spin_unlock_irqrestore(&sport->port.lock, flags);
static void clear_rx_errors(struct imx_port *sport);
/*
* We have a modem side uart, so the meanings of RTS and CTS are inverted.
*/
static unsigned int imx_get_hwmctrl(struct imx_port *sport)
{
unsigned int tmp = TIOCM_DSR;
unsigned usr1 = imx_uart_readl(sport, USR1);
unsigned usr2 = imx_uart_readl(sport, USR2);
if (usr1 & USR1_RTSS)
tmp |= TIOCM_CTS;
/* in DCE mode DCDIN is always 0 */
tmp |= TIOCM_CAR;
if (sport->dte_mode)
if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
tmp |= TIOCM_RI;
return tmp;
}
/*
* Handle any change of modem status signal since we were last called.
*/
static void imx_mctrl_check(struct imx_port *sport)
{
unsigned int status, changed;
status = imx_get_hwmctrl(sport);
changed = status ^ sport->old_status;
if (changed == 0)
return;
sport->old_status = status;
if (changed & TIOCM_RI && status & TIOCM_RI)
sport->port.icount.rng++;
if (changed & TIOCM_DSR)
sport->port.icount.dsr++;
if (changed & TIOCM_CAR)
uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
if (changed & TIOCM_CTS)
uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
}
static irqreturn_t imx_int(int irq, void *dev_id)
{
struct imx_port *sport = dev_id;
unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
irqreturn_t ret = IRQ_NONE;
usr1 = imx_uart_readl(sport, USR1);
usr2 = imx_uart_readl(sport, USR2);
ucr1 = imx_uart_readl(sport, UCR1);
ucr2 = imx_uart_readl(sport, UCR2);
ucr3 = imx_uart_readl(sport, UCR3);
ucr4 = imx_uart_readl(sport, UCR4);
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
/*
* Even if a condition is true that can trigger an irq only handle it if
* the respective irq source is enabled. This prevents some undesired
* actions, for example if a character that sits in the RX FIFO and that
* should be fetched via DMA is tried to be fetched using PIO. Or the
* receiver is currently off and so reading from URXD0 results in an
* exception. So just mask the (raw) status bits for disabled irqs.
*/
if ((ucr1 & UCR1_RRDYEN) == 0)
usr1 &= ~USR1_RRDY;
if ((ucr2 & UCR2_ATEN) == 0)
usr1 &= ~USR1_AGTIM;
if ((ucr1 & UCR1_TXMPTYEN) == 0)
usr1 &= ~USR1_TRDY;
if ((ucr4 & UCR4_TCEN) == 0)
usr2 &= ~USR2_TXDC;
if ((ucr3 & UCR3_DTRDEN) == 0)
usr1 &= ~USR1_DTRD;
if ((ucr1 & UCR1_RTSDEN) == 0)
usr1 &= ~USR1_RTSD;
if ((ucr3 & UCR3_AWAKEN) == 0)
usr1 &= ~USR1_AWAKE;
if ((ucr4 & UCR4_OREN) == 0)
usr2 &= ~USR2_ORE;
if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
ret = IRQ_HANDLED;
if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
imx_txint(irq, dev_id);
ret = IRQ_HANDLED;
}
if (usr1 & USR1_DTRD) {
unsigned long flags;
imx_uart_writel(sport, USR1_DTRD, USR1);
spin_lock_irqsave(&sport->port.lock, flags);
imx_mctrl_check(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
ret = IRQ_HANDLED;
}
if (usr1 & USR1_RTSD) {
imx_rtsint(irq, dev_id);
ret = IRQ_HANDLED;
}
if (usr1 & USR1_AWAKE) {
imx_uart_writel(sport, USR1_AWAKE, USR1);
ret = IRQ_HANDLED;
}
if (usr2 & USR2_ORE) {
sport->port.icount.overrun++;
imx_uart_writel(sport, USR2_ORE, USR2);
ret = IRQ_HANDLED;
return ret;
/*
* Return TIOCSER_TEMT when transmitter is not busy.
*/
static unsigned int imx_tx_empty(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0;
/* If the TX DMA is working, return 0. */
if (sport->dma_is_txing)
/* called with port.lock taken and irqs off */
Uwe Kleine-König
committed
static unsigned int imx_get_mctrl(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
unsigned int ret = imx_get_hwmctrl(sport);
mctrl_gpio_get(sport->gpios, &ret);
return ret;
}
/* called with port.lock taken and irqs off */
static void imx_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct imx_port *sport = (struct imx_port *)port;
u32 ucr3, uts;
if (!(port->rs485.flags & SER_RS485_ENABLED)) {
u32 ucr2;
ucr2 = imx_uart_readl(sport, UCR2);
ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
if (mctrl & TIOCM_RTS)
ucr2 |= UCR2_CTS | UCR2_CTSC;
imx_uart_writel(sport, ucr2, UCR2);
ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
if (!(mctrl & TIOCM_DTR))
ucr3 |= UCR3_DSR;
imx_uart_writel(sport, ucr3, UCR3);
uts = imx_uart_readl(sport, uts_reg(sport)) & ~UTS_LOOP;
uts |= UTS_LOOP;
imx_uart_writel(sport, uts, uts_reg(sport));
Uwe Kleine-König
committed
mctrl_gpio_set(sport->gpios, mctrl);
}
/*
* Interrupts always disabled.
*/
static void imx_break_ctl(struct uart_port *port, int break_state)
{
struct imx_port *sport = (struct imx_port *)port;
unsigned long flags;
u32 ucr1;
ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
if (break_state != 0)
ucr1 |= UCR1_SNDBRK;
imx_uart_writel(sport, ucr1, UCR1);
spin_unlock_irqrestore(&sport->port.lock, flags);
}
/*
* This is our per-port timeout handler, for checking the
* modem status signals.
*/
static void imx_timeout(struct timer_list *t)
struct imx_port *sport = from_timer(sport, t, timer);
unsigned long flags;
if (sport->port.state) {
spin_lock_irqsave(&sport->port.lock, flags);
imx_mctrl_check(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
}
}
#define RX_BUF_SIZE (PAGE_SIZE)
* There are two kinds of RX DMA interrupts(such as in the MX6Q):
* [2] the aging timer expires
* Condition [2] is triggered when a character has been sitting in the FIFO
* for at least 8 byte durations.
*/
static void dma_rx_callback(void *data)
{
struct imx_port *sport = data;
struct dma_chan *chan = sport->dma_chan_rx;
struct scatterlist *sgl = &sport->rx_sgl;
struct tty_port *port = &sport->port.state->port;
struct circ_buf *rx_ring = &sport->rx_ring;