Newer
Older
* Driver for Motorola/Freescale IMX serial ports
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
* Author: Sascha Hauer <sascha@saschahauer.de>
* Copyright (C) 2004 Pengutronix
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/platform_device.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_data/serial-imx.h>
#include <linux/platform_data/dma-imx.h>
Uwe Kleine-König
committed
#include "serial_mctrl_gpio.h"
/* Register definitions */
#define URXD0 0x0 /* Receiver Register */
#define URTX0 0x40 /* Transmitter Register */
#define UCR1 0x80 /* Control Register 1 */
#define UCR2 0x84 /* Control Register 2 */
#define UCR3 0x88 /* Control Register 3 */
#define UCR4 0x8c /* Control Register 4 */
#define UFCR 0x90 /* FIFO Control Register */
#define USR1 0x94 /* Status Register 1 */
#define USR2 0x98 /* Status Register 2 */
#define UESC 0x9c /* Escape Character Register */
#define UTIM 0xa0 /* Escape Timer Register */
#define UBIR 0xa4 /* BRM Incremental Register */
#define UBMR 0xa8 /* BRM Modulator Register */
#define UBRC 0xac /* Baud Rate Count Register */
#define IMX21_ONEMS 0xb0 /* One Millisecond register */
#define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
#define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
/* UART Control Register Bit Fields.*/
#define URXD_CHARRDY (1<<15)
#define URXD_ERR (1<<14)
#define URXD_OVRRUN (1<<13)
#define URXD_FRMERR (1<<12)
#define URXD_BRK (1<<11)
#define URXD_PRERR (1<<10)
#define UCR1_ADEN (1<<15) /* Auto detect interrupt */
#define UCR1_ADBR (1<<14) /* Auto detect baud rate */
#define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */
#define UCR1_IDEN (1<<12) /* Idle condition interrupt */
#define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
#define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */
#define UCR1_RDMAEN (1<<8) /* Recv ready DMA enable */
#define UCR1_IREN (1<<7) /* Infrared interface enable */
#define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */
#define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */
#define UCR1_SNDBRK (1<<4) /* Send break */
#define UCR1_TDMAEN (1<<3) /* Transmitter ready DMA enable */
#define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
#define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */
#define UCR1_DOZE (1<<1) /* Doze */
#define UCR1_UARTEN (1<<0) /* UART enabled */
#define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */
#define UCR2_IRTS (1<<14) /* Ignore RTS pin */
#define UCR2_CTSC (1<<13) /* CTS pin control */
#define UCR2_CTS (1<<12) /* Clear to send */
#define UCR2_ESCEN (1<<11) /* Escape enable */
#define UCR2_PREN (1<<8) /* Parity enable */
#define UCR2_PROE (1<<7) /* Parity odd/even */
#define UCR2_STPB (1<<6) /* Stop */
#define UCR2_WS (1<<5) /* Word size */
#define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */
#define UCR2_ATEN (1<<3) /* Aging Timer Enable */
#define UCR2_TXEN (1<<2) /* Transmitter enabled */
#define UCR2_RXEN (1<<1) /* Receiver enabled */
#define UCR2_SRST (1<<0) /* SW reset */
#define UCR3_DTREN (1<<13) /* DTR interrupt enable */
#define UCR3_PARERREN (1<<12) /* Parity enable */
#define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */
#define UCR3_DSR (1<<10) /* Data set ready */
#define UCR3_DCD (1<<9) /* Data carrier detect */
#define UCR3_RI (1<<8) /* Ring indicator */
#define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */
#define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */
#define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */
#define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */
#define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */
#define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */
#define UCR3_INVT (1<<1) /* Inverted Infrared transmission */
#define UCR3_BPEN (1<<0) /* Preset registers enable */
#define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */
#define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */
#define UCR4_INVR (1<<9) /* Inverted infrared reception */
#define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */
#define UCR4_WKEN (1<<7) /* Wake interrupt enable */
#define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */
#define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */
#define UCR4_IRSC (1<<5) /* IR special case */
#define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */
#define UCR4_BKEN (1<<2) /* Break condition interrupt enable */
#define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */
#define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */
#define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */
#define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */
#define UFCR_RFDIV (7<<7) /* Reference freq divider mask */
#define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7)
#define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */
#define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */
#define USR1_RTSS (1<<14) /* RTS pin status */
#define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */
#define USR1_RTSD (1<<12) /* RTS delta */
#define USR1_ESCF (1<<11) /* Escape seq interrupt flag */
#define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */
#define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */
#define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */
#define USR1_DTRD (1<<7) /* DTR Delta */
#define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */
#define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */
#define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */
#define USR2_ADET (1<<15) /* Auto baud rate detect complete */
#define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */
#define USR2_DTRF (1<<13) /* DTR edge interrupt flag */
#define USR2_IDLE (1<<12) /* Idle condition */
#define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */
#define USR2_RIIN (1<<9) /* Ring Indicator Input */
#define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */
#define USR2_WAKE (1<<7) /* Wake */
#define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */
#define USR2_RTSF (1<<4) /* RTS edge interrupt flag */
#define USR2_TXDC (1<<3) /* Transmitter complete */
#define USR2_BRCD (1<<2) /* Break condition */
#define USR2_ORE (1<<1) /* Overrun error */
#define USR2_RDR (1<<0) /* Recv data ready */
#define UTS_FRCPERR (1<<13) /* Force parity error */
#define UTS_LOOP (1<<12) /* Loop tx and rx */
#define UTS_TXEMPTY (1<<6) /* TxFIFO empty */
#define UTS_RXEMPTY (1<<5) /* RxFIFO empty */
#define UTS_TXFULL (1<<4) /* TxFIFO full */
#define UTS_RXFULL (1<<3) /* RxFIFO full */
#define UTS_SOFTRST (1<<0) /* Software reset */
/* We've been assigned a range on the "Low-density serial ports" major */
#define SERIAL_IMX_MAJOR 207
#define MINOR_START 16
#define DEV_NAME "ttymxc"
/*
* This determines how often we check the modem status signals
* for any change. They generally aren't connected to an IRQ
* so we have to poll them. We also check immediately before
* filling the TX fifo incase CTS has been dropped.
*/
#define MCTRL_TIMEOUT (250*HZ/1000)
#define DRIVER_NAME "IMX-uart"
/* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
enum imx_uart_type {
IMX1_UART,
IMX21_UART,
};
/* device type dependent stuff */
struct imx_uart_data {
unsigned uts_reg;
enum imx_uart_type devtype;
};
struct imx_port {
struct uart_port port;
struct timer_list timer;
unsigned int old_status;
unsigned int have_rtsgpio:1;
struct clk *clk_ipg;
struct clk *clk_per;
const struct imx_uart_data *devdata;
Uwe Kleine-König
committed
struct mctrl_gpios *gpios;
/* DMA fields */
unsigned int dma_is_inited:1;
unsigned int dma_is_enabled:1;
unsigned int dma_is_rxing:1;
unsigned int dma_is_txing:1;
struct dma_chan *dma_chan_rx, *dma_chan_tx;
struct scatterlist rx_sgl, tx_sgl[2];
void *rx_buf;
struct circ_buf rx_ring;
unsigned int rx_periods;
dma_cookie_t rx_cookie;
unsigned int tx_bytes;
unsigned int saved_reg[10];
bool context_saved;
struct imx_port_ucrs {
unsigned int ucr1;
unsigned int ucr2;
unsigned int ucr3;
};
static struct imx_uart_data imx_uart_devdata[] = {
[IMX1_UART] = {
.uts_reg = IMX1_UTS,
.devtype = IMX1_UART,
},
[IMX21_UART] = {
.uts_reg = IMX21_UTS,
.devtype = IMX21_UART,
},
[IMX53_UART] = {
.uts_reg = IMX21_UTS,
.devtype = IMX53_UART,
},
[IMX6Q_UART] = {
.uts_reg = IMX21_UTS,
.devtype = IMX6Q_UART,
},
static const struct platform_device_id imx_uart_devtype[] = {
{
.name = "imx1-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
}, {
.name = "imx21-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
}, {
.name = "imx53-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
}, {
.name = "imx6q-uart",
.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
static const struct of_device_id imx_uart_dt_ids[] = {
{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
static inline unsigned uts_reg(struct imx_port *sport)
{
return sport->devdata->uts_reg;
}
static inline int is_imx1_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX1_UART;
}
static inline int is_imx21_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX21_UART;
}
static inline int is_imx53_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX53_UART;
}
static inline int is_imx6q_uart(struct imx_port *sport)
{
return sport->devdata->devtype == IMX6Q_UART;
}
fabio.estevam@freescale.com
committed
/*
* Save and restore functions for UCR1, UCR2 and UCR3 registers
*/
#if defined(CONFIG_SERIAL_IMX_CONSOLE)
fabio.estevam@freescale.com
committed
static void imx_port_ucrs_save(struct uart_port *port,
struct imx_port_ucrs *ucr)
{
/* save control registers */
ucr->ucr1 = readl(port->membase + UCR1);
ucr->ucr2 = readl(port->membase + UCR2);
ucr->ucr3 = readl(port->membase + UCR3);
}
static void imx_port_ucrs_restore(struct uart_port *port,
struct imx_port_ucrs *ucr)
{
/* restore control registers */
writel(ucr->ucr1, port->membase + UCR1);
writel(ucr->ucr2, port->membase + UCR2);
writel(ucr->ucr3, port->membase + UCR3);
}
fabio.estevam@freescale.com
committed
Uwe Kleine-König
committed
static void imx_port_rts_active(struct imx_port *sport, unsigned long *ucr2)
{
*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
Uwe Kleine-König
committed
mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
}
static void imx_port_rts_inactive(struct imx_port *sport, unsigned long *ucr2)
{
*ucr2 &= ~UCR2_CTSC;
*ucr2 |= UCR2_CTS;
Uwe Kleine-König
committed
mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
}
static void imx_port_rts_auto(struct imx_port *sport, unsigned long *ucr2)
{
*ucr2 |= UCR2_CTSC;
}
static void imx_stop_tx(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
/*
* We are maybe in the SMP context, so if the DMA TX thread is running
* on other cpu, we have to wait for it to finish.
*/
if (sport->dma_is_enabled && sport->dma_is_txing)
return;
temp = readl(port->membase + UCR1);
writel(temp & ~UCR1_TXMPTYEN, port->membase + UCR1);
/* in rs485 mode disable transmitter if shifter is empty */
if (port->rs485.flags & SER_RS485_ENABLED &&
readl(port->membase + USR2) & USR2_TXDC) {
temp = readl(port->membase + UCR2);
if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
Uwe Kleine-König
committed
imx_port_rts_active(sport, &temp);
else
imx_port_rts_inactive(sport, &temp);
writel(temp, port->membase + UCR2);
temp = readl(port->membase + UCR4);
temp &= ~UCR4_TCEN;
writel(temp, port->membase + UCR4);
}
}
/*
* interrupts disabled on entry
*/
static void imx_stop_rx(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
if (sport->dma_is_enabled && sport->dma_is_rxing) {
if (sport->port.suspended) {
dmaengine_terminate_all(sport->dma_chan_rx);
sport->dma_is_rxing = 0;
} else {
return;
}
}
temp = readl(sport->port.membase + UCR2);
writel(temp & ~UCR2_RXEN, sport->port.membase + UCR2);
/* disable the `Receiver Ready Interrrupt` */
temp = readl(sport->port.membase + UCR1);
writel(temp & ~UCR1_RRDYEN, sport->port.membase + UCR1);
}
/*
* Set the modem control timer to fire immediately.
*/
static void imx_enable_ms(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
mod_timer(&sport->timer, jiffies);
Uwe Kleine-König
committed
mctrl_gpio_enable_ms(sport->gpios);
static void imx_dma_tx(struct imx_port *sport);
static inline void imx_transmit_buffer(struct imx_port *sport)
{
if (sport->port.x_char) {
/* Send next char */
writel(sport->port.x_char, sport->port.membase + URTX0);
sport->port.icount.tx++;
sport->port.x_char = 0;
return;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
imx_stop_tx(&sport->port);
return;
}
if (sport->dma_is_enabled) {
/*
* We've just sent a X-char Ensure the TX DMA is enabled
* and the TX IRQ is disabled.
**/
temp = readl(sport->port.membase + UCR1);
temp &= ~UCR1_TXMPTYEN;
if (sport->dma_is_txing) {
temp |= UCR1_TDMAEN;
writel(temp, sport->port.membase + UCR1);
} else {
writel(temp, sport->port.membase + UCR1);
imx_dma_tx(sport);
}
}
while (!uart_circ_empty(xmit) && !sport->dma_is_txing &&
!(readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)) {
/* send xmit->buf[xmit->tail]
* out the port here */
writel(xmit->buf[xmit->tail], sport->port.membase + URTX0);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
imx_stop_tx(&sport->port);
static void dma_tx_callback(void *data)
{
struct imx_port *sport = data;
struct scatterlist *sgl = &sport->tx_sgl[0];
struct circ_buf *xmit = &sport->port.state->xmit;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
temp = readl(sport->port.membase + UCR1);
temp &= ~UCR1_TDMAEN;
writel(temp, sport->port.membase + UCR1);
/* update the stat */
xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
sport->port.icount.tx += sport->tx_bytes;
dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
sport->dma_is_txing = 0;
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
imx_dma_tx(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
static void imx_dma_tx(struct imx_port *sport)
{
struct circ_buf *xmit = &sport->port.state->xmit;
struct scatterlist *sgl = sport->tx_sgl;
struct dma_async_tx_descriptor *desc;
struct dma_chan *chan = sport->dma_chan_tx;
struct device *dev = sport->port.dev;
if (sport->dma_is_txing)
return;
sport->tx_bytes = uart_circ_chars_pending(xmit);
if (xmit->tail < xmit->head) {
sport->dma_tx_nents = 1;
sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
} else {
sport->dma_tx_nents = 2;
sg_init_table(sgl, 2);
sg_set_buf(sgl, xmit->buf + xmit->tail,
UART_XMIT_SIZE - xmit->tail);
sg_set_buf(sgl + 1, xmit->buf, xmit->head);
}
ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
if (ret == 0) {
dev_err(dev, "DMA mapping error for TX.\n");
return;
}
desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!desc) {
dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
DMA_TO_DEVICE);
dev_err(dev, "We cannot prepare for the TX slave dma!\n");
return;
}
desc->callback = dma_tx_callback;
desc->callback_param = sport;
dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
uart_circ_chars_pending(xmit));
temp = readl(sport->port.membase + UCR1);
temp |= UCR1_TDMAEN;
writel(temp, sport->port.membase + UCR1);
/* fire it */
sport->dma_is_txing = 1;
dmaengine_submit(desc);
dma_async_issue_pending(chan);
return;
}
static void imx_start_tx(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
if (port->rs485.flags & SER_RS485_ENABLED) {
temp = readl(port->membase + UCR2);
if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
Uwe Kleine-König
committed
imx_port_rts_active(sport, &temp);
else
imx_port_rts_inactive(sport, &temp);
if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
temp &= ~UCR2_RXEN;
writel(temp, port->membase + UCR2);
Uwe Kleine-König
committed
/* enable transmitter and shifter empty irq */
temp = readl(port->membase + UCR4);
temp |= UCR4_TCEN;
writel(temp, port->membase + UCR4);
}
if (!sport->dma_is_enabled) {
temp = readl(sport->port.membase + UCR1);
writel(temp | UCR1_TXMPTYEN, sport->port.membase + UCR1);
}
if (sport->port.x_char) {
/* We have X-char to send, so enable TX IRQ and
* disable TX DMA to let TX interrupt to send X-char */
temp = readl(sport->port.membase + UCR1);
temp &= ~UCR1_TDMAEN;
temp |= UCR1_TXMPTYEN;
writel(temp, sport->port.membase + UCR1);
return;
}
if (!uart_circ_empty(&port->state->xmit) &&
!uart_tx_stopped(port))
imx_dma_tx(sport);
static irqreturn_t imx_rtsint(int irq, void *dev_id)
struct imx_port *sport = dev_id;
unsigned int val;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
writel(USR1_RTSD, sport->port.membase + USR1);
val = readl(sport->port.membase + USR1) & USR1_RTSS;
uart_handle_cts_change(&sport->port, !!val);
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
spin_unlock_irqrestore(&sport->port.lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t imx_txint(int irq, void *dev_id)
struct imx_port *sport = dev_id;
spin_lock_irqsave(&sport->port.lock, flags);
spin_unlock_irqrestore(&sport->port.lock, flags);
static irqreturn_t imx_rxint(int irq, void *dev_id)
unsigned int rx, flg, ignored = 0;
struct tty_port *port = &sport->port.state->port;
spin_lock_irqsave(&sport->port.lock, flags);
while (readl(sport->port.membase + USR2) & USR2_RDR) {
rx = readl(sport->port.membase + URXD0);
temp = readl(sport->port.membase + USR2);
if (temp & USR2_BRCD) {
writel(USR2_BRCD, sport->port.membase + USR2);
if (uart_handle_break(&sport->port))
continue;
if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
continue;
if (unlikely(rx & URXD_ERR)) {
if (rx & URXD_BRK)
sport->port.icount.brk++;
else if (rx & URXD_PRERR)
sport->port.icount.parity++;
else if (rx & URXD_FRMERR)
sport->port.icount.frame++;
if (rx & URXD_OVRRUN)
sport->port.icount.overrun++;
if (rx & sport->port.ignore_status_mask) {
if (++ignored > 100)
goto out;
continue;
}
rx &= (sport->port.read_status_mask | 0xFF);
if (rx & URXD_BRK)
flg = TTY_BREAK;
else if (rx & URXD_PRERR)
flg = TTY_PARITY;
else if (rx & URXD_FRMERR)
flg = TTY_FRAME;
if (rx & URXD_OVRRUN)
flg = TTY_OVERRUN;
#ifdef SUPPORT_SYSRQ
sport->port.sysrq = 0;
#endif
}
if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
goto out;
if (tty_insert_flip_char(port, rx, flg) == 0)
sport->port.icount.buf_overrun++;
spin_unlock_irqrestore(&sport->port.lock, flags);
static void imx_disable_rx_int(struct imx_port *sport)
{
unsigned long temp;
sport->dma_is_rxing = 1;
/* disable the receiver ready and aging timer interrupts */
temp = readl(sport->port.membase + UCR1);
temp &= ~(UCR1_RRDYEN);
writel(temp, sport->port.membase + UCR1);
temp = readl(sport->port.membase + UCR2);
temp &= ~(UCR2_ATEN);
writel(temp, sport->port.membase + UCR2);
/* disable the rx errors interrupts */
temp = readl(sport->port.membase + UCR4);
temp &= ~UCR4_OREN;
writel(temp, sport->port.membase + UCR4);
}
static void clear_rx_errors(struct imx_port *sport);
static int start_rx_dma(struct imx_port *sport);
/*
* If the RXFIFO is filled with some data, and then we
* arise a DMA operation to receive them.
*/
static void imx_dma_rxint(struct imx_port *sport)
{
unsigned long temp;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
temp = readl(sport->port.membase + USR2);
if ((temp & USR2_RDR) && !sport->dma_is_rxing) {
imx_disable_rx_int(sport);
/* tell the DMA to receive the data. */
start_rx_dma(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
/*
* We have a modem side uart, so the meanings of RTS and CTS are inverted.
*/
static unsigned int imx_get_hwmctrl(struct imx_port *sport)
{
unsigned int tmp = TIOCM_DSR;
unsigned usr1 = readl(sport->port.membase + USR1);
unsigned usr2 = readl(sport->port.membase + USR2);
if (usr1 & USR1_RTSS)
tmp |= TIOCM_CTS;
/* in DCE mode DCDIN is always 0 */
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
tmp |= TIOCM_CAR;
if (sport->dte_mode)
if (!(readl(sport->port.membase + USR2) & USR2_RIIN))
tmp |= TIOCM_RI;
return tmp;
}
/*
* Handle any change of modem status signal since we were last called.
*/
static void imx_mctrl_check(struct imx_port *sport)
{
unsigned int status, changed;
status = imx_get_hwmctrl(sport);
changed = status ^ sport->old_status;
if (changed == 0)
return;
sport->old_status = status;
if (changed & TIOCM_RI && status & TIOCM_RI)
sport->port.icount.rng++;
if (changed & TIOCM_DSR)
sport->port.icount.dsr++;
if (changed & TIOCM_CAR)
uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
if (changed & TIOCM_CTS)
uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
}
static irqreturn_t imx_int(int irq, void *dev_id)
{
struct imx_port *sport = dev_id;
unsigned int sts;
irqreturn_t ret = IRQ_NONE;
sts = readl(sport->port.membase + USR1);
sts2 = readl(sport->port.membase + USR2);
if (sts & (USR1_RRDY | USR1_AGTIM)) {
if (sport->dma_is_enabled)
imx_dma_rxint(sport);
else
imx_rxint(irq, dev_id);
ret = IRQ_HANDLED;
if ((sts & USR1_TRDY &&
readl(sport->port.membase + UCR1) & UCR1_TXMPTYEN) ||
(sts2 & USR2_TXDC &&
readl(sport->port.membase + UCR4) & UCR4_TCEN)) {
imx_txint(irq, dev_id);
ret = IRQ_HANDLED;
}
if (sts & USR1_DTRD) {
unsigned long flags;
if (sts & USR1_DTRD)
writel(USR1_DTRD, sport->port.membase + USR1);
spin_lock_irqsave(&sport->port.lock, flags);
imx_mctrl_check(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
ret = IRQ_HANDLED;
}
if (sts & USR1_RTSD) {
imx_rtsint(irq, dev_id);
ret = IRQ_HANDLED;
}
if (sts & USR1_AWAKE) {
writel(USR1_AWAKE, sport->port.membase + USR1);
ret = IRQ_HANDLED;
}
if (sts2 & USR2_ORE) {
sport->port.icount.overrun++;
writel(USR2_ORE, sport->port.membase + USR2);
ret = IRQ_HANDLED;
return ret;
/*
* Return TIOCSER_TEMT when transmitter is not busy.
*/
static unsigned int imx_tx_empty(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
ret = (readl(sport->port.membase + USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0;
/* If the TX DMA is working, return 0. */
if (sport->dma_is_enabled && sport->dma_is_txing)
ret = 0;
return ret;
Uwe Kleine-König
committed
static unsigned int imx_get_mctrl(struct uart_port *port)
{
struct imx_port *sport = (struct imx_port *)port;
unsigned int ret = imx_get_hwmctrl(sport);
mctrl_gpio_get(sport->gpios, &ret);
return ret;
}
static void imx_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct imx_port *sport = (struct imx_port *)port;
if (!(port->rs485.flags & SER_RS485_ENABLED)) {
temp = readl(sport->port.membase + UCR2);
temp &= ~(UCR2_CTS | UCR2_CTSC);
if (mctrl & TIOCM_RTS)
temp |= UCR2_CTS | UCR2_CTSC;
writel(temp, sport->port.membase + UCR2);
}
temp = readl(sport->port.membase + UCR3) & ~UCR3_DSR;
if (!(mctrl & TIOCM_DTR))
temp |= UCR3_DSR;
writel(temp, sport->port.membase + UCR3);
temp = readl(sport->port.membase + uts_reg(sport)) & ~UTS_LOOP;
if (mctrl & TIOCM_LOOP)
temp |= UTS_LOOP;
writel(temp, sport->port.membase + uts_reg(sport));
Uwe Kleine-König
committed
mctrl_gpio_set(sport->gpios, mctrl);
}
/*
* Interrupts always disabled.
*/
static void imx_break_ctl(struct uart_port *port, int break_state)
{
struct imx_port *sport = (struct imx_port *)port;
temp = readl(sport->port.membase + UCR1) & ~UCR1_SNDBRK;
if (break_state != 0)
temp |= UCR1_SNDBRK;
writel(temp, sport->port.membase + UCR1);
spin_unlock_irqrestore(&sport->port.lock, flags);
}
/*
* This is our per-port timeout handler, for checking the
* modem status signals.
*/
static void imx_timeout(unsigned long data)
{
struct imx_port *sport = (struct imx_port *)data;
unsigned long flags;
if (sport->port.state) {
spin_lock_irqsave(&sport->port.lock, flags);
imx_mctrl_check(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
}
}
#define RX_BUF_SIZE (PAGE_SIZE)
* There are two kinds of RX DMA interrupts(such as in the MX6Q):
* [2] the aging timer expires
* Condition [2] is triggered when a character has been sitting in the FIFO
* for at least 8 byte durations.
*/
static void dma_rx_callback(void *data)
{
struct imx_port *sport = data;
struct dma_chan *chan = sport->dma_chan_rx;
struct scatterlist *sgl = &sport->rx_sgl;
struct tty_port *port = &sport->port.state->port;
struct circ_buf *rx_ring = &sport->rx_ring;
unsigned int w_bytes = 0;
unsigned int r_bytes;
unsigned int bd_size;
status = dmaengine_tx_status(chan, (dma_cookie_t)0, &state);
if (status == DMA_ERROR) {
dev_err(sport->port.dev, "DMA transaction error.\n");
clear_rx_errors(sport);
return;
}
if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
/*
* The state-residue variable represents the empty space
* relative to the entire buffer. Taking this in consideration
* the head is always calculated base on the buffer total
* length - DMA transaction residue. The UART script from the
* SDMA firmware will jump to the next buffer descriptor,
* once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
* Taking this in consideration the tail is always at the
* beginning of the buffer descriptor that contains the head.
*/
/* Calculate the head */
rx_ring->head = sg_dma_len(sgl) - state.residue;