Skip to content
Snippets Groups Projects
Commit 2b8c70b2 authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6

* 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6: (362 commits)
  V4L-DVB: cx88-dvb: remove extra attribution for core
  V4L/DVB: v4l: soc_camera: fix bound checking of mbus_fmt[] index
  V4L/DVB: Add support for SMT7020 to cx88
  V4L/DVB: radio-si470x: Use UTF-8 encoding on a comment
  V4L/DVB: MAINTAINERS: Telegent tlg2300 section fix
  V4L/DVB: gspca_stv06xx: Add support for camera button
  V4L/DVB: gspca_ov519: add support for the button on ov511 based cams
  V4L/DVB: gspca_ov519: Add support for the button on ov518 based cams
  V4L/DVB: gspca_ov519: add support for the button on ov519 based cams
  V4L/DVB: gspca_main: Fix a compile error when CONFIG_INPUT is not set
  V4L/DVB: gspca_main: some input error handling fixes
  V4L/DVB: gspca_main: Allow use of input device creation code for non int. inputs
  V4L/DVB: gspca_pac7302: much improved exposure control
  V4L/DVB: gspca_sonixb: Make sonixb driver handle pas106 and pas202 cameras
  V4L/DVB: gspca_sonixb: pas106: fixup bright ctrl and add gain and exposure ctrls
  V4L/DVB: Documentation: gspca.txt: update known mr97310a cams
  V4L/DVB: gspca_mr97310a: add support for the Sakar 1638x CyberPix
  V4L/DVB: gscpa_sonixb: limit ov7630 max framerate at 640x480
  V4L/DVB: gspca_sonixb: pas202: fixup brightness ctrl and add gain and exposure ctrls
  V4L/DVB: gscpa_sonixb: Differentiate between sensors with a coarse and fine expo ctrl
  ...
parents 29e1fa35 3621263a
No related merge requests found
Showing
with 734 additions and 168 deletions
...@@ -589,7 +589,8 @@ number of a video input as in &v4l2-input; field ...@@ -589,7 +589,8 @@ number of a video input as in &v4l2-input; field
<entry></entry> <entry></entry>
<entry>A place holder for future extensions and custom <entry>A place holder for future extensions and custom
(driver defined) buffer types (driver defined) buffer types
<constant>V4L2_BUF_TYPE_PRIVATE</constant> and higher.</entry> <constant>V4L2_BUF_TYPE_PRIVATE</constant> and higher. Applications
should set this to 0.</entry>
</row> </row>
</tbody> </tbody>
</tgroup> </tgroup>
......
...@@ -54,12 +54,10 @@ to enqueue an empty (capturing) or filled (output) buffer in the ...@@ -54,12 +54,10 @@ to enqueue an empty (capturing) or filled (output) buffer in the
driver's incoming queue. The semantics depend on the selected I/O driver's incoming queue. The semantics depend on the selected I/O
method.</para> method.</para>
<para>To enqueue a <link linkend="mmap">memory mapped</link> <para>To enqueue a buffer applications set the <structfield>type</structfield>
buffer applications set the <structfield>type</structfield> field of a field of a &v4l2-buffer; to the same buffer type as was previously used
&v4l2-buffer; to the same buffer type as previously &v4l2-format; with &v4l2-format; <structfield>type</structfield> and &v4l2-requestbuffers;
<structfield>type</structfield> and &v4l2-requestbuffers; <structfield>type</structfield>. Applications must also set the
<structfield>type</structfield>, the <structfield>memory</structfield>
field to <constant>V4L2_MEMORY_MMAP</constant> and the
<structfield>index</structfield> field. Valid index numbers range from <structfield>index</structfield> field. Valid index numbers range from
zero to the number of buffers allocated with &VIDIOC-REQBUFS; zero to the number of buffers allocated with &VIDIOC-REQBUFS;
(&v4l2-requestbuffers; <structfield>count</structfield>) minus one. The (&v4l2-requestbuffers; <structfield>count</structfield>) minus one. The
...@@ -70,8 +68,19 @@ intended for output (<structfield>type</structfield> is ...@@ -70,8 +68,19 @@ intended for output (<structfield>type</structfield> is
<constant>V4L2_BUF_TYPE_VBI_OUTPUT</constant>) applications must also <constant>V4L2_BUF_TYPE_VBI_OUTPUT</constant>) applications must also
initialize the <structfield>bytesused</structfield>, initialize the <structfield>bytesused</structfield>,
<structfield>field</structfield> and <structfield>field</structfield> and
<structfield>timestamp</structfield> fields. See <xref <structfield>timestamp</structfield> fields, see <xref
linkend="buffer" /> for details. When linkend="buffer" /> for details.
Applications must also set <structfield>flags</structfield> to 0. If a driver
supports capturing from specific video inputs and you want to specify a video
input, then <structfield>flags</structfield> should be set to
<constant>V4L2_BUF_FLAG_INPUT</constant> and the field
<structfield>input</structfield> must be initialized to the desired input.
The <structfield>reserved</structfield> field must be set to 0.
</para>
<para>To enqueue a <link linkend="mmap">memory mapped</link>
buffer applications set the <structfield>memory</structfield>
field to <constant>V4L2_MEMORY_MMAP</constant>. When
<constant>VIDIOC_QBUF</constant> is called with a pointer to this <constant>VIDIOC_QBUF</constant> is called with a pointer to this
structure the driver sets the structure the driver sets the
<constant>V4L2_BUF_FLAG_MAPPED</constant> and <constant>V4L2_BUF_FLAG_MAPPED</constant> and
...@@ -81,14 +90,10 @@ structure the driver sets the ...@@ -81,14 +90,10 @@ structure the driver sets the
&EINVAL;.</para> &EINVAL;.</para>
<para>To enqueue a <link linkend="userp">user pointer</link> <para>To enqueue a <link linkend="userp">user pointer</link>
buffer applications set the <structfield>type</structfield> field of a buffer applications set the <structfield>memory</structfield>
&v4l2-buffer; to the same buffer type as previously &v4l2-format; field to <constant>V4L2_MEMORY_USERPTR</constant>, the
<structfield>type</structfield> and &v4l2-requestbuffers;
<structfield>type</structfield>, the <structfield>memory</structfield>
field to <constant>V4L2_MEMORY_USERPTR</constant> and the
<structfield>m.userptr</structfield> field to the address of the <structfield>m.userptr</structfield> field to the address of the
buffer and <structfield>length</structfield> to its size. When the buffer and <structfield>length</structfield> to its size.
buffer is intended for output additional fields must be set as above.
When <constant>VIDIOC_QBUF</constant> is called with a pointer to this When <constant>VIDIOC_QBUF</constant> is called with a pointer to this
structure the driver sets the <constant>V4L2_BUF_FLAG_QUEUED</constant> structure the driver sets the <constant>V4L2_BUF_FLAG_QUEUED</constant>
flag and clears the <constant>V4L2_BUF_FLAG_MAPPED</constant> and flag and clears the <constant>V4L2_BUF_FLAG_MAPPED</constant> and
...@@ -96,13 +101,14 @@ flag and clears the <constant>V4L2_BUF_FLAG_MAPPED</constant> and ...@@ -96,13 +101,14 @@ flag and clears the <constant>V4L2_BUF_FLAG_MAPPED</constant> and
<structfield>flags</structfield> field, or it returns an error code. <structfield>flags</structfield> field, or it returns an error code.
This ioctl locks the memory pages of the buffer in physical memory, This ioctl locks the memory pages of the buffer in physical memory,
they cannot be swapped out to disk. Buffers remain locked until they cannot be swapped out to disk. Buffers remain locked until
dequeued, until the &VIDIOC-STREAMOFF; or &VIDIOC-REQBUFS; ioctl are dequeued, until the &VIDIOC-STREAMOFF; or &VIDIOC-REQBUFS; ioctl is
called, or until the device is closed.</para> called, or until the device is closed.</para>
<para>Applications call the <constant>VIDIOC_DQBUF</constant> <para>Applications call the <constant>VIDIOC_DQBUF</constant>
ioctl to dequeue a filled (capturing) or displayed (output) buffer ioctl to dequeue a filled (capturing) or displayed (output) buffer
from the driver's outgoing queue. They just set the from the driver's outgoing queue. They just set the
<structfield>type</structfield> and <structfield>memory</structfield> <structfield>type</structfield>, <structfield>memory</structfield>
and <structfield>reserved</structfield>
fields of a &v4l2-buffer; as above, when <constant>VIDIOC_DQBUF</constant> fields of a &v4l2-buffer; as above, when <constant>VIDIOC_DQBUF</constant>
is called with a pointer to this structure the driver fills the is called with a pointer to this structure the driver fills the
remaining fields or returns an error code.</para> remaining fields or returns an error code.</para>
......
...@@ -54,12 +54,13 @@ buffer at any time after buffers have been allocated with the ...@@ -54,12 +54,13 @@ buffer at any time after buffers have been allocated with the
&VIDIOC-REQBUFS; ioctl.</para> &VIDIOC-REQBUFS; ioctl.</para>
<para>Applications set the <structfield>type</structfield> field <para>Applications set the <structfield>type</structfield> field
of a &v4l2-buffer; to the same buffer type as previously of a &v4l2-buffer; to the same buffer type as was previously used with
&v4l2-format; <structfield>type</structfield> and &v4l2-requestbuffers; &v4l2-format; <structfield>type</structfield> and &v4l2-requestbuffers;
<structfield>type</structfield>, and the <structfield>index</structfield> <structfield>type</structfield>, and the <structfield>index</structfield>
field. Valid index numbers range from zero field. Valid index numbers range from zero
to the number of buffers allocated with &VIDIOC-REQBUFS; to the number of buffers allocated with &VIDIOC-REQBUFS;
(&v4l2-requestbuffers; <structfield>count</structfield>) minus one. (&v4l2-requestbuffers; <structfield>count</structfield>) minus one.
The <structfield>reserved</structfield> field should to set to 0.
After calling <constant>VIDIOC_QUERYBUF</constant> with a pointer to After calling <constant>VIDIOC_QUERYBUF</constant> with a pointer to
this structure drivers return an error code or fill the rest of this structure drivers return an error code or fill the rest of
the structure.</para> the structure.</para>
...@@ -68,8 +69,8 @@ the structure.</para> ...@@ -68,8 +69,8 @@ the structure.</para>
<constant>V4L2_BUF_FLAG_MAPPED</constant>, <constant>V4L2_BUF_FLAG_MAPPED</constant>,
<constant>V4L2_BUF_FLAG_QUEUED</constant> and <constant>V4L2_BUF_FLAG_QUEUED</constant> and
<constant>V4L2_BUF_FLAG_DONE</constant> flags will be valid. The <constant>V4L2_BUF_FLAG_DONE</constant> flags will be valid. The
<structfield>memory</structfield> field will be set to <structfield>memory</structfield> field will be set to the current
<constant>V4L2_MEMORY_MMAP</constant>, the <structfield>m.offset</structfield> I/O method, the <structfield>m.offset</structfield>
contains the offset of the buffer from the start of the device memory, contains the offset of the buffer from the start of the device memory,
the <structfield>length</structfield> field its size. The driver may the <structfield>length</structfield> field its size. The driver may
or may not set the remaining fields and flags, they are meaningless in or may not set the remaining fields and flags, they are meaningless in
......
...@@ -54,23 +54,23 @@ I/O. Memory mapped buffers are located in device memory and must be ...@@ -54,23 +54,23 @@ I/O. Memory mapped buffers are located in device memory and must be
allocated with this ioctl before they can be mapped into the allocated with this ioctl before they can be mapped into the
application's address space. User buffers are allocated by application's address space. User buffers are allocated by
applications themselves, and this ioctl is merely used to switch the applications themselves, and this ioctl is merely used to switch the
driver into user pointer I/O mode.</para> driver into user pointer I/O mode and to setup some internal structures.</para>
<para>To allocate device buffers applications initialize three <para>To allocate device buffers applications initialize all
fields of a <structname>v4l2_requestbuffers</structname> structure. fields of the <structname>v4l2_requestbuffers</structname> structure.
They set the <structfield>type</structfield> field to the respective They set the <structfield>type</structfield> field to the respective
stream or buffer type, the <structfield>count</structfield> field to stream or buffer type, the <structfield>count</structfield> field to
the desired number of buffers, and <structfield>memory</structfield> the desired number of buffers, <structfield>memory</structfield>
must be set to <constant>V4L2_MEMORY_MMAP</constant>. When the ioctl must be set to the requested I/O method and the reserved array
is called with a pointer to this structure the driver attempts to must be zeroed. When the ioctl
allocate the requested number of buffers and stores the actual number is called with a pointer to this structure the driver will attempt to allocate
the requested number of buffers and it stores the actual number
allocated in the <structfield>count</structfield> field. It can be allocated in the <structfield>count</structfield> field. It can be
smaller than the number requested, even zero, when the driver runs out smaller than the number requested, even zero, when the driver runs out
of free memory. A larger number is possible when the driver requires of free memory. A larger number is also possible when the driver requires
more buffers to function correctly.<footnote> more buffers to function correctly. For example video output requires at least two buffers,
<para>For example video output requires at least two buffers,
one displayed and one filled by the application.</para> one displayed and one filled by the application.</para>
</footnote> When memory mapping I/O is not supported the ioctl <para>When the I/O method is not supported the ioctl
returns an &EINVAL;.</para> returns an &EINVAL;.</para>
<para>Applications can call <constant>VIDIOC_REQBUFS</constant> <para>Applications can call <constant>VIDIOC_REQBUFS</constant>
...@@ -81,14 +81,6 @@ in progress, an implicit &VIDIOC-STREAMOFF;. <!-- mhs: I see no ...@@ -81,14 +81,6 @@ in progress, an implicit &VIDIOC-STREAMOFF;. <!-- mhs: I see no
reason why munmap()ping one or even all buffers must imply reason why munmap()ping one or even all buffers must imply
streamoff.--></para> streamoff.--></para>
<para>To negotiate user pointer I/O, applications initialize only
the <structfield>type</structfield> field and set
<structfield>memory</structfield> to
<constant>V4L2_MEMORY_USERPTR</constant>. When the ioctl is called
with a pointer to this structure the driver prepares for user pointer
I/O, when this I/O method is not supported the ioctl returns an
&EINVAL;.</para>
<table pgwide="1" frame="none" id="v4l2-requestbuffers"> <table pgwide="1" frame="none" id="v4l2-requestbuffers">
<title>struct <structname>v4l2_requestbuffers</structname></title> <title>struct <structname>v4l2_requestbuffers</structname></title>
<tgroup cols="3"> <tgroup cols="3">
...@@ -97,9 +89,7 @@ I/O, when this I/O method is not supported the ioctl returns an ...@@ -97,9 +89,7 @@ I/O, when this I/O method is not supported the ioctl returns an
<row> <row>
<entry>__u32</entry> <entry>__u32</entry>
<entry><structfield>count</structfield></entry> <entry><structfield>count</structfield></entry>
<entry>The number of buffers requested or granted. This <entry>The number of buffers requested or granted.</entry>
field is only used when <structfield>memory</structfield> is set to
<constant>V4L2_MEMORY_MMAP</constant>.</entry>
</row> </row>
<row> <row>
<entry>&v4l2-buf-type;</entry> <entry>&v4l2-buf-type;</entry>
...@@ -120,7 +110,7 @@ as the &v4l2-format; <structfield>type</structfield> field. See <xref ...@@ -120,7 +110,7 @@ as the &v4l2-format; <structfield>type</structfield> field. See <xref
<entry><structfield>reserved</structfield>[2]</entry> <entry><structfield>reserved</structfield>[2]</entry>
<entry>A place holder for future extensions and custom <entry>A place holder for future extensions and custom
(driver defined) buffer types <constant>V4L2_BUF_TYPE_PRIVATE</constant> and (driver defined) buffer types <constant>V4L2_BUF_TYPE_PRIVATE</constant> and
higher.</entry> higher. This array should be zeroed by applications.</entry>
</row> </row>
</tbody> </tbody>
</tgroup> </tgroup>
......
...@@ -26,7 +26,7 @@ use IO::Handle; ...@@ -26,7 +26,7 @@ use IO::Handle;
"dec3000s", "vp7041", "dibusb", "nxt2002", "nxt2004", "dec3000s", "vp7041", "dibusb", "nxt2002", "nxt2004",
"or51211", "or51132_qam", "or51132_vsb", "bluebird", "or51211", "or51132_qam", "or51132_vsb", "bluebird",
"opera1", "cx231xx", "cx18", "cx23885", "pvrusb2", "mpc718", "opera1", "cx231xx", "cx18", "cx23885", "pvrusb2", "mpc718",
"af9015"); "af9015", "ngene");
# Check args # Check args
syntax() if (scalar(@ARGV) != 1); syntax() if (scalar(@ARGV) != 1);
...@@ -39,7 +39,7 @@ for ($i=0; $i < scalar(@components); $i++) { ...@@ -39,7 +39,7 @@ for ($i=0; $i < scalar(@components); $i++) {
die $@ if $@; die $@ if $@;
print STDERR <<EOF; print STDERR <<EOF;
Firmware(s) $outfile extracted successfully. Firmware(s) $outfile extracted successfully.
Now copy it(they) to either /usr/lib/hotplug/firmware or /lib/firmware Now copy it(them) to either /usr/lib/hotplug/firmware or /lib/firmware
(depending on configuration of firmware hotplug). (depending on configuration of firmware hotplug).
EOF EOF
exit(0); exit(0);
...@@ -549,6 +549,24 @@ sub af9015 { ...@@ -549,6 +549,24 @@ sub af9015 {
close INFILE; close INFILE;
} }
sub ngene {
my $url = "http://www.digitaldevices.de/download/";
my $file1 = "ngene_15.fw";
my $hash1 = "d798d5a757121174f0dbc5f2833c0c85";
my $file2 = "ngene_17.fw";
my $hash2 = "26b687136e127b8ac24b81e0eeafc20b";
checkstandard();
wgetfile($file1, $url . $file1);
verify($file1, $hash1);
wgetfile($file2, $url . $file2);
verify($file2, $hash2);
"$file1, $file2";
}
# --------------------------------------------------------------- # ---------------------------------------------------------------
# Utilities # Utilities
...@@ -667,6 +685,7 @@ sub delzero{ ...@@ -667,6 +685,7 @@ sub delzero{
sub syntax() { sub syntax() {
print STDERR "syntax: get_dvb_firmware <component>\n"; print STDERR "syntax: get_dvb_firmware <component>\n";
print STDERR "Supported components:\n"; print STDERR "Supported components:\n";
@components = sort @components;
for($i=0; $i < scalar(@components); $i++) { for($i=0; $i < scalar(@components); $i++) {
print STDERR "\t" . $components[$i] . "\n"; print STDERR "\t" . $components[$i] . "\n";
} }
......
...@@ -26,3 +26,4 @@ ...@@ -26,3 +26,4 @@
25 -> Compro VideoMate E800 [1858:e800] 25 -> Compro VideoMate E800 [1858:e800]
26 -> Hauppauge WinTV-HVR1290 [0070:8551] 26 -> Hauppauge WinTV-HVR1290 [0070:8551]
27 -> Mygica X8558 PRO DMB-TH [14f1:8578] 27 -> Mygica X8558 PRO DMB-TH [14f1:8578]
28 -> LEADTEK WinFast PxTV1200 [107d:6f22]
...@@ -174,3 +174,4 @@ ...@@ -174,3 +174,4 @@
173 -> Zolid Hybrid TV Tuner PCI [1131:2004] 173 -> Zolid Hybrid TV Tuner PCI [1131:2004]
174 -> Asus Europa Hybrid OEM [1043:4847] 174 -> Asus Europa Hybrid OEM [1043:4847]
175 -> Leadtek Winfast DTV1000S [107d:6655] 175 -> Leadtek Winfast DTV1000S [107d:6655]
176 -> Beholder BeholdTV 505 RDS [0000:5051]
...@@ -81,3 +81,4 @@ tuner=80 - Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough ...@@ -81,3 +81,4 @@ tuner=80 - Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough
tuner=81 - Partsnic (Daewoo) PTI-5NF05 tuner=81 - Partsnic (Daewoo) PTI-5NF05
tuner=82 - Philips CU1216L tuner=82 - Philips CU1216L
tuner=83 - NXP TDA18271 tuner=83 - NXP TDA18271
tuner=84 - Sony BTF-Pxn01Z
tlg2300 release notes
====================
This is a v4l2/dvb device driver for the tlg2300 chip.
current status
==============
video
- support mmap and read().(no overlay)
audio
- The driver will register a ALSA card for the audio input.
vbi
- Works for almost TV norms.
dvb-t
- works for DVB-T
FM
- Works for radio.
---------------------------------------------------------------------------
TESTED APPLICATIONS:
-VLC1.0.4 test the video and dvb. The GUI is friendly to use.
-Mplayer test the video.
-Mplayer test the FM. The mplayer should be compiled with --enable-radio and
--enable-radio-capture.
The command runs as this(The alsa audio registers to card 1):
#mplayer radio://103.7/capture/ -radio adevice=hw=1,0:arate=48000 \
-rawaudio rate=48000:channels=2
---------------------------------------------------------------------------
KNOWN PROBLEMS:
about preemphasis:
You can set the preemphasis for radio by the following command:
#v4l2-ctl -d /dev/radio0 --set-ctrl=pre_emphasis_settings=1
"pre_emphasis_settings=1" means that you select the 50us. If you want
to select the 75us, please use "pre_emphasis_settings=2"
...@@ -42,6 +42,7 @@ ov519 041e:4064 Creative Live! VISTA VF0420 ...@@ -42,6 +42,7 @@ ov519 041e:4064 Creative Live! VISTA VF0420
ov519 041e:4067 Creative Live! Cam Video IM (VF0350) ov519 041e:4067 Creative Live! Cam Video IM (VF0350)
ov519 041e:4068 Creative Live! VISTA VF0470 ov519 041e:4068 Creative Live! VISTA VF0470
spca561 0458:7004 Genius VideoCAM Express V2 spca561 0458:7004 Genius VideoCAM Express V2
sn9c2028 0458:7005 Genius Smart 300, version 2
sunplus 0458:7006 Genius Dsc 1.3 Smart sunplus 0458:7006 Genius Dsc 1.3 Smart
zc3xx 0458:7007 Genius VideoCam V2 zc3xx 0458:7007 Genius VideoCam V2
zc3xx 0458:700c Genius VideoCam V3 zc3xx 0458:700c Genius VideoCam V3
...@@ -109,6 +110,7 @@ sunplus 04a5:3003 Benq DC 1300 ...@@ -109,6 +110,7 @@ sunplus 04a5:3003 Benq DC 1300
sunplus 04a5:3008 Benq DC 1500 sunplus 04a5:3008 Benq DC 1500
sunplus 04a5:300a Benq DC 3410 sunplus 04a5:300a Benq DC 3410
spca500 04a5:300c Benq DC 1016 spca500 04a5:300c Benq DC 1016
benq 04a5:3035 Benq DC E300
finepix 04cb:0104 Fujifilm FinePix 4800 finepix 04cb:0104 Fujifilm FinePix 4800
finepix 04cb:0109 Fujifilm FinePix A202 finepix 04cb:0109 Fujifilm FinePix A202
finepix 04cb:010b Fujifilm FinePix A203 finepix 04cb:010b Fujifilm FinePix A203
...@@ -142,6 +144,7 @@ sunplus 04fc:5360 Sunplus Generic ...@@ -142,6 +144,7 @@ sunplus 04fc:5360 Sunplus Generic
spca500 04fc:7333 PalmPixDC85 spca500 04fc:7333 PalmPixDC85
sunplus 04fc:ffff Pure DigitalDakota sunplus 04fc:ffff Pure DigitalDakota
spca501 0506:00df 3Com HomeConnect Lite spca501 0506:00df 3Com HomeConnect Lite
sunplus 052b:1507 Megapixel 5 Pretec DC-1007
sunplus 052b:1513 Megapix V4 sunplus 052b:1513 Megapix V4
sunplus 052b:1803 MegaImage VI sunplus 052b:1803 MegaImage VI
tv8532 0545:808b Veo Stingray tv8532 0545:808b Veo Stingray
...@@ -151,6 +154,7 @@ sunplus 0546:3191 Polaroid Ion 80 ...@@ -151,6 +154,7 @@ sunplus 0546:3191 Polaroid Ion 80
sunplus 0546:3273 Polaroid PDC2030 sunplus 0546:3273 Polaroid PDC2030
ov519 054c:0154 Sonny toy4 ov519 054c:0154 Sonny toy4
ov519 054c:0155 Sonny toy5 ov519 054c:0155 Sonny toy5
cpia1 0553:0002 CPIA CPiA (version1) based cameras
zc3xx 055f:c005 Mustek Wcam300A zc3xx 055f:c005 Mustek Wcam300A
spca500 055f:c200 Mustek Gsmart 300 spca500 055f:c200 Mustek Gsmart 300
sunplus 055f:c211 Kowa Bs888e Microcamera sunplus 055f:c211 Kowa Bs888e Microcamera
...@@ -188,8 +192,7 @@ spca500 06bd:0404 Agfa CL20 ...@@ -188,8 +192,7 @@ spca500 06bd:0404 Agfa CL20
spca500 06be:0800 Optimedia spca500 06be:0800 Optimedia
sunplus 06d6:0031 Trust 610 LCD PowerC@m Zoom sunplus 06d6:0031 Trust 610 LCD PowerC@m Zoom
spca506 06e1:a190 ADS Instant VCD spca506 06e1:a190 ADS Instant VCD
ov534 06f8:3002 Hercules Blog Webcam ov534_9 06f8:3003 Hercules Dualpix HD Weblog
ov534 06f8:3003 Hercules Dualpix HD Weblog
sonixj 06f8:3004 Hercules Classic Silver sonixj 06f8:3004 Hercules Classic Silver
sonixj 06f8:3008 Hercules Deluxe Optical Glass sonixj 06f8:3008 Hercules Deluxe Optical Glass
pac7302 06f8:3009 Hercules Classic Link pac7302 06f8:3009 Hercules Classic Link
...@@ -204,6 +207,7 @@ sunplus 0733:2221 Mercury Digital Pro 3.1p ...@@ -204,6 +207,7 @@ sunplus 0733:2221 Mercury Digital Pro 3.1p
sunplus 0733:3261 Concord 3045 spca536a sunplus 0733:3261 Concord 3045 spca536a
sunplus 0733:3281 Cyberpix S550V sunplus 0733:3281 Cyberpix S550V
spca506 0734:043b 3DeMon USB Capture aka spca506 0734:043b 3DeMon USB Capture aka
cpia1 0813:0001 QX3 camera
ov519 0813:0002 Dual Mode USB Camera Plus ov519 0813:0002 Dual Mode USB Camera Plus
spca500 084d:0003 D-Link DSC-350 spca500 084d:0003 D-Link DSC-350
spca500 08ca:0103 Aiptek PocketDV spca500 08ca:0103 Aiptek PocketDV
...@@ -225,7 +229,8 @@ sunplus 08ca:2050 Medion MD 41437 ...@@ -225,7 +229,8 @@ sunplus 08ca:2050 Medion MD 41437
sunplus 08ca:2060 Aiptek PocketDV5300 sunplus 08ca:2060 Aiptek PocketDV5300
tv8532 0923:010f ICM532 cams tv8532 0923:010f ICM532 cams
mars 093a:050f Mars-Semi Pc-Camera mars 093a:050f Mars-Semi Pc-Camera
mr97310a 093a:010f Sakar Digital no. 77379 mr97310a 093a:010e All known CIF cams with this ID
mr97310a 093a:010f All known VGA cams with this ID
pac207 093a:2460 Qtec Webcam 100 pac207 093a:2460 Qtec Webcam 100
pac207 093a:2461 HP Webcam pac207 093a:2461 HP Webcam
pac207 093a:2463 Philips SPC 220 NC pac207 093a:2463 Philips SPC 220 NC
...@@ -302,6 +307,7 @@ sonixj 0c45:613b Surfer SN-206 ...@@ -302,6 +307,7 @@ sonixj 0c45:613b Surfer SN-206
sonixj 0c45:613c Sonix Pccam168 sonixj 0c45:613c Sonix Pccam168
sonixj 0c45:6143 Sonix Pccam168 sonixj 0c45:6143 Sonix Pccam168
sonixj 0c45:6148 Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia sonixj 0c45:6148 Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia
sonixj 0c45:614a Frontech E-Ccam (JIL-2225)
sn9c20x 0c45:6240 PC Camera (SN9C201 + MT9M001) sn9c20x 0c45:6240 PC Camera (SN9C201 + MT9M001)
sn9c20x 0c45:6242 PC Camera (SN9C201 + MT9M111) sn9c20x 0c45:6242 PC Camera (SN9C201 + MT9M111)
sn9c20x 0c45:6248 PC Camera (SN9C201 + OV9655) sn9c20x 0c45:6248 PC Camera (SN9C201 + OV9655)
...@@ -324,6 +330,10 @@ sn9c20x 0c45:62b0 PC Camera (SN9C202 + MT9V011/MT9V111/MT9V112) ...@@ -324,6 +330,10 @@ sn9c20x 0c45:62b0 PC Camera (SN9C202 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:62b3 PC Camera (SN9C202 + OV9655) sn9c20x 0c45:62b3 PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:62bb PC Camera (SN9C202 + OV7660) sn9c20x 0c45:62bb PC Camera (SN9C202 + OV7660)
sn9c20x 0c45:62bc PC Camera (SN9C202 + HV7131R) sn9c20x 0c45:62bc PC Camera (SN9C202 + HV7131R)
sn9c2028 0c45:8001 Wild Planet Digital Spy Camera
sn9c2028 0c45:8003 Sakar #11199, #6637x, #67480 keychain cams
sn9c2028 0c45:8008 Mini-Shotz ms-350
sn9c2028 0c45:800a Vivitar Vivicam 3350B
sunplus 0d64:0303 Sunplus FashionCam DXG sunplus 0d64:0303 Sunplus FashionCam DXG
ov519 0e96:c001 TRUST 380 USB2 SPACEC@M ov519 0e96:c001 TRUST 380 USB2 SPACEC@M
etoms 102c:6151 Qcam Sangha CIF etoms 102c:6151 Qcam Sangha CIF
...@@ -341,10 +351,11 @@ spca501 1776:501c Arowana 300K CMOS Camera ...@@ -341,10 +351,11 @@ spca501 1776:501c Arowana 300K CMOS Camera
t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops
vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC
pac207 2001:f115 D-Link DSB-C120 pac207 2001:f115 D-Link DSB-C120
sq905c 2770:9050 sq905c sq905c 2770:9050 Disney pix micro (CIF)
sq905c 2770:905c DualCamera sq905c 2770:9052 Disney pix micro 2 (VGA)
sq905 2770:9120 Argus Digital Camera DC1512 sq905c 2770:905c All 11 known cameras with this ID
sq905c 2770:913d sq905c sq905 2770:9120 All 24 known cameras with this ID
sq905c 2770:913d All 4 known cameras with this ID
spca500 2899:012c Toptro Industrial spca500 2899:012c Toptro Industrial
ov519 8020:ef04 ov519 ov519 8020:ef04 ov519
spca508 8086:0110 Intel Easy PC Camera spca508 8086:0110 Intel Easy PC Camera
......
...@@ -599,99 +599,13 @@ video_device::minor fields. ...@@ -599,99 +599,13 @@ video_device::minor fields.
video buffer helper functions video buffer helper functions
----------------------------- -----------------------------
The v4l2 core API provides a standard method for dealing with video The v4l2 core API provides a set of standard methods (called "videobuf")
buffers. Those methods allow a driver to implement read(), mmap() and for dealing with video buffers. Those methods allow a driver to implement
overlay() on a consistent way. read(), mmap() and overlay() in a consistent way. There are currently
methods for using video buffers on devices that supports DMA with
There are currently methods for using video buffers on devices that scatter/gather method (videobuf-dma-sg), DMA with linear access
supports DMA with scatter/gather method (videobuf-dma-sg), DMA with (videobuf-dma-contig), and vmalloced buffers, mostly used on USB drivers
linear access (videobuf-dma-contig), and vmalloced buffers, mostly (videobuf-vmalloc).
used on USB drivers (videobuf-vmalloc).
Please see Documentation/video4linux/videobuf for more information on how
Any driver using videobuf should provide operations (callbacks) for to use the videobuf layer.
four handlers:
ops->buf_setup - calculates the size of the video buffers and avoid they
to waste more than some maximum limit of RAM;
ops->buf_prepare - fills the video buffer structs and calls
videobuf_iolock() to alloc and prepare mmaped memory;
ops->buf_queue - advices the driver that another buffer were
requested (by read() or by QBUF);
ops->buf_release - frees any buffer that were allocated.
In order to use it, the driver need to have a code (generally called at
interrupt context) that will properly handle the buffer request lists,
announcing that a new buffer were filled.
The irq handling code should handle the videobuf task lists, in order
to advice videobuf that a new frame were filled, in order to honor to a
request. The code is generally like this one:
if (list_empty(&dma_q->active))
return;
buf = list_entry(dma_q->active.next, struct vbuffer, vb.queue);
if (!waitqueue_active(&buf->vb.done))
return;
/* Some logic to handle the buf may be needed here */
list_del(&buf->vb.queue);
do_gettimeofday(&buf->vb.ts);
wake_up(&buf->vb.done);
Those are the videobuffer functions used on drivers, implemented on
videobuf-core:
- Videobuf init functions
videobuf_queue_sg_init()
Initializes the videobuf infrastructure. This function should be
called before any other videobuf function on drivers that uses DMA
Scatter/Gather buffers.
videobuf_queue_dma_contig_init
Initializes the videobuf infrastructure. This function should be
called before any other videobuf function on drivers that need DMA
contiguous buffers.
videobuf_queue_vmalloc_init()
Initializes the videobuf infrastructure. This function should be
called before any other videobuf function on USB (and other drivers)
that need a vmalloced type of videobuf.
- videobuf_iolock()
Prepares the videobuf memory for the proper method (read, mmap, overlay).
- videobuf_queue_is_busy()
Checks if a videobuf is streaming.
- videobuf_queue_cancel()
Stops video handling.
- videobuf_mmap_free()
frees mmap buffers.
- videobuf_stop()
Stops video handling, ends mmap and frees mmap and other buffers.
- V4L2 api functions. Those functions correspond to VIDIOC_foo ioctls:
videobuf_reqbufs(), videobuf_querybuf(), videobuf_qbuf(),
videobuf_dqbuf(), videobuf_streamon(), videobuf_streamoff().
- V4L1 api function (corresponds to VIDIOCMBUF ioctl):
videobuf_cgmbuf()
This function is used to provide backward compatibility with V4L1
API.
- Some help functions for read()/poll() operations:
videobuf_read_stream()
For continuous stream read()
videobuf_read_one()
For snapshot read()
videobuf_poll_stream()
polling help function
The better way to understand it is to take a look at vivi driver. One
of the main reasons for vivi is to be a videobuf usage example. the
vivi_thread_tick() does the task that the IRQ callback would do on PCI
drivers (or the irq callback on USB).
An introduction to the videobuf layer
Jonathan Corbet <corbet@lwn.net>
Current as of 2.6.33
The videobuf layer functions as a sort of glue layer between a V4L2 driver
and user space. It handles the allocation and management of buffers for
the storage of video frames. There is a set of functions which can be used
to implement many of the standard POSIX I/O system calls, including read(),
poll(), and, happily, mmap(). Another set of functions can be used to
implement the bulk of the V4L2 ioctl() calls related to streaming I/O,
including buffer allocation, queueing and dequeueing, and streaming
control. Using videobuf imposes a few design decisions on the driver
author, but the payback comes in the form of reduced code in the driver and
a consistent implementation of the V4L2 user-space API.
Buffer types
Not all video devices use the same kind of buffers. In fact, there are (at
least) three common variations:
- Buffers which are scattered in both the physical and (kernel) virtual
address spaces. (Almost) all user-space buffers are like this, but it
makes great sense to allocate kernel-space buffers this way as well when
it is possible. Unfortunately, it is not always possible; working with
this kind of buffer normally requires hardware which can do
scatter/gather DMA operations.
- Buffers which are physically scattered, but which are virtually
contiguous; buffers allocated with vmalloc(), in other words. These
buffers are just as hard to use for DMA operations, but they can be
useful in situations where DMA is not available but virtually-contiguous
buffers are convenient.
- Buffers which are physically contiguous. Allocation of this kind of
buffer can be unreliable on fragmented systems, but simpler DMA
controllers cannot deal with anything else.
Videobuf can work with all three types of buffers, but the driver author
must pick one at the outset and design the driver around that decision.
[It's worth noting that there's a fourth kind of buffer: "overlay" buffers
which are located within the system's video memory. The overlay
functionality is considered to be deprecated for most use, but it still
shows up occasionally in system-on-chip drivers where the performance
benefits merit the use of this technique. Overlay buffers can be handled
as a form of scattered buffer, but there are very few implementations in
the kernel and a description of this technique is currently beyond the
scope of this document.]
Data structures, callbacks, and initialization
Depending on which type of buffers are being used, the driver should
include one of the following files:
<media/videobuf-dma-sg.h> /* Physically scattered */
<media/videobuf-vmalloc.h> /* vmalloc() buffers */
<media/videobuf-dma-contig.h> /* Physically contiguous */
The driver's data structure describing a V4L2 device should include a
struct videobuf_queue instance for the management of the buffer queue,
along with a list_head for the queue of available buffers. There will also
need to be an interrupt-safe spinlock which is used to protect (at least)
the queue.
The next step is to write four simple callbacks to help videobuf deal with
the management of buffers:
struct videobuf_queue_ops {
int (*buf_setup)(struct videobuf_queue *q,
unsigned int *count, unsigned int *size);
int (*buf_prepare)(struct videobuf_queue *q,
struct videobuf_buffer *vb,
enum v4l2_field field);
void (*buf_queue)(struct videobuf_queue *q,
struct videobuf_buffer *vb);
void (*buf_release)(struct videobuf_queue *q,
struct videobuf_buffer *vb);
};
buf_setup() is called early in the I/O process, when streaming is being
initiated; its purpose is to tell videobuf about the I/O stream. The count
parameter will be a suggested number of buffers to use; the driver should
check it for rationality and adjust it if need be. As a practical rule, a
minimum of two buffers are needed for proper streaming, and there is
usually a maximum (which cannot exceed 32) which makes sense for each
device. The size parameter should be set to the expected (maximum) size
for each frame of data.
Each buffer (in the form of a struct videobuf_buffer pointer) will be
passed to buf_prepare(), which should set the buffer's size, width, height,
and field fields properly. If the buffer's state field is
VIDEOBUF_NEEDS_INIT, the driver should pass it to:
int videobuf_iolock(struct videobuf_queue* q, struct videobuf_buffer *vb,
struct v4l2_framebuffer *fbuf);
Among other things, this call will usually allocate memory for the buffer.
Finally, the buf_prepare() function should set the buffer's state to
VIDEOBUF_PREPARED.
When a buffer is queued for I/O, it is passed to buf_queue(), which should
put it onto the driver's list of available buffers and set its state to
VIDEOBUF_QUEUED. Note that this function is called with the queue spinlock
held; if it tries to acquire it as well things will come to a screeching
halt. Yes, this is the voice of experience. Note also that videobuf may
wait on the first buffer in the queue; placing other buffers in front of it
could again gum up the works. So use list_add_tail() to enqueue buffers.
Finally, buf_release() is called when a buffer is no longer intended to be
used. The driver should ensure that there is no I/O active on the buffer,
then pass it to the appropriate free routine(s):
/* Scatter/gather drivers */
int videobuf_dma_unmap(struct videobuf_queue *q,
struct videobuf_dmabuf *dma);
int videobuf_dma_free(struct videobuf_dmabuf *dma);
/* vmalloc drivers */
void videobuf_vmalloc_free (struct videobuf_buffer *buf);
/* Contiguous drivers */
void videobuf_dma_contig_free(struct videobuf_queue *q,
struct videobuf_buffer *buf);
One way to ensure that a buffer is no longer under I/O is to pass it to:
int videobuf_waiton(struct videobuf_buffer *vb, int non_blocking, int intr);
Here, vb is the buffer, non_blocking indicates whether non-blocking I/O
should be used (it should be zero in the buf_release() case), and intr
controls whether an interruptible wait is used.
File operations
At this point, much of the work is done; much of the rest is slipping
videobuf calls into the implementation of the other driver callbacks. The
first step is in the open() function, which must initialize the
videobuf queue. The function to use depends on the type of buffer used:
void videobuf_queue_sg_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);
void videobuf_queue_vmalloc_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);
void videobuf_queue_dma_contig_init(struct videobuf_queue *q,
struct videobuf_queue_ops *ops,
struct device *dev,
spinlock_t *irqlock,
enum v4l2_buf_type type,
enum v4l2_field field,
unsigned int msize,
void *priv);
In each case, the parameters are the same: q is the queue structure for the
device, ops is the set of callbacks as described above, dev is the device
structure for this video device, irqlock is an interrupt-safe spinlock to
protect access to the data structures, type is the buffer type used by the
device (cameras will use V4L2_BUF_TYPE_VIDEO_CAPTURE, for example), field
describes which field is being captured (often V4L2_FIELD_NONE for
progressive devices), msize is the size of any containing structure used
around struct videobuf_buffer, and priv is a private data pointer which
shows up in the priv_data field of struct videobuf_queue. Note that these
are void functions which, evidently, are immune to failure.
V4L2 capture drivers can be written to support either of two APIs: the
read() system call and the rather more complicated streaming mechanism. As
a general rule, it is necessary to support both to ensure that all
applications have a chance of working with the device. Videobuf makes it
easy to do that with the same code. To implement read(), the driver need
only make a call to one of:
ssize_t videobuf_read_one(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int nonblocking);
ssize_t videobuf_read_stream(struct videobuf_queue *q,
char __user *data, size_t count,
loff_t *ppos, int vbihack, int nonblocking);
Either one of these functions will read frame data into data, returning the
amount actually read; the difference is that videobuf_read_one() will only
read a single frame, while videobuf_read_stream() will read multiple frames
if they are needed to satisfy the count requested by the application. A
typical driver read() implementation will start the capture engine, call
one of the above functions, then stop the engine before returning (though a
smarter implementation might leave the engine running for a little while in
anticipation of another read() call happening in the near future).
The poll() function can usually be implemented with a direct call to:
unsigned int videobuf_poll_stream(struct file *file,
struct videobuf_queue *q,
poll_table *wait);
Note that the actual wait queue eventually used will be the one associated
with the first available buffer.
When streaming I/O is done to kernel-space buffers, the driver must support
the mmap() system call to enable user space to access the data. In many
V4L2 drivers, the often-complex mmap() implementation simplifies to a
single call to:
int videobuf_mmap_mapper(struct videobuf_queue *q,
struct vm_area_struct *vma);
Everything else is handled by the videobuf code.
The release() function requires two separate videobuf calls:
void videobuf_stop(struct videobuf_queue *q);
int videobuf_mmap_free(struct videobuf_queue *q);
The call to videobuf_stop() terminates any I/O in progress - though it is
still up to the driver to stop the capture engine. The call to
videobuf_mmap_free() will ensure that all buffers have been unmapped; if
so, they will all be passed to the buf_release() callback. If buffers
remain mapped, videobuf_mmap_free() returns an error code instead. The
purpose is clearly to cause the closing of the file descriptor to fail if
buffers are still mapped, but every driver in the 2.6.32 kernel cheerfully
ignores its return value.
ioctl() operations
The V4L2 API includes a very long list of driver callbacks to respond to
the many ioctl() commands made available to user space. A number of these
- those associated with streaming I/O - turn almost directly into videobuf
calls. The relevant helper functions are:
int videobuf_reqbufs(struct videobuf_queue *q,
struct v4l2_requestbuffers *req);
int videobuf_querybuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_qbuf(struct videobuf_queue *q, struct v4l2_buffer *b);
int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b,
int nonblocking);
int videobuf_streamon(struct videobuf_queue *q);
int videobuf_streamoff(struct videobuf_queue *q);
int videobuf_cgmbuf(struct videobuf_queue *q, struct video_mbuf *mbuf,
int count);
So, for example, a VIDIOC_REQBUFS call turns into a call to the driver's
vidioc_reqbufs() callback which, in turn, usually only needs to locate the
proper struct videobuf_queue pointer and pass it to videobuf_reqbufs().
These support functions can replace a great deal of buffer management
boilerplate in a lot of V4L2 drivers.
The vidioc_streamon() and vidioc_streamoff() functions will be a bit more
complex, of course, since they will also need to deal with starting and
stopping the capture engine. videobuf_cgmbuf(), called from the driver's
vidiocgmbuf() function, only exists if the V4L1 compatibility module has
been selected with CONFIG_VIDEO_V4L1_COMPAT, so its use must be surrounded
with #ifdef directives.
Buffer allocation
Thus far, we have talked about buffers, but have not looked at how they are
allocated. The scatter/gather case is the most complex on this front. For
allocation, the driver can leave buffer allocation entirely up to the
videobuf layer; in this case, buffers will be allocated as anonymous
user-space pages and will be very scattered indeed. If the application is
using user-space buffers, no allocation is needed; the videobuf layer will
take care of calling get_user_pages() and filling in the scatterlist array.
If the driver needs to do its own memory allocation, it should be done in
the vidioc_reqbufs() function, *after* calling videobuf_reqbufs(). The
first step is a call to:
struct videobuf_dmabuf *videobuf_to_dma(struct videobuf_buffer *buf);
The returned videobuf_dmabuf structure (defined in
<media/videobuf-dma-sg.h>) includes a couple of relevant fields:
struct scatterlist *sglist;
int sglen;
The driver must allocate an appropriately-sized scatterlist array and
populate it with pointers to the pieces of the allocated buffer; sglen
should be set to the length of the array.
Drivers using the vmalloc() method need not (and cannot) concern themselves
with buffer allocation at all; videobuf will handle those details. The
same is normally true of contiguous-DMA drivers as well; videobuf will
allocate the buffers (with dma_alloc_coherent()) when it sees fit. That
means that these drivers may be trying to do high-order allocations at any
time, an operation which is not always guaranteed to work. Some drivers
play tricks by allocating DMA space at system boot time; videobuf does not
currently play well with those drivers.
As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer,
as long as that buffer is physically contiguous. Normal user-space
allocations will not meet that criterion, but buffers obtained from other
kernel drivers, or those contained within huge pages, will work with these
drivers.
Filling the buffers
The final part of a videobuf implementation has no direct callback - it's
the portion of the code which actually puts frame data into the buffers,
usually in response to interrupts from the device. For all types of
drivers, this process works approximately as follows:
- Obtain the next available buffer and make sure that somebody is actually
waiting for it.
- Get a pointer to the memory and put video data there.
- Mark the buffer as done and wake up the process waiting for it.
Step (1) above is done by looking at the driver-managed list_head structure
- the one which is filled in the buf_queue() callback. Because starting
the engine and enqueueing buffers are done in separate steps, it's possible
for the engine to be running without any buffers available - in the
vmalloc() case especially. So the driver should be prepared for the list
to be empty. It is equally possible that nobody is yet interested in the
buffer; the driver should not remove it from the list or fill it until a
process is waiting on it. That test can be done by examining the buffer's
done field (a wait_queue_head_t structure) with waitqueue_active().
A buffer's state should be set to VIDEOBUF_ACTIVE before being mapped for
DMA; that ensures that the videobuf layer will not try to do anything with
it while the device is transferring data.
For scatter/gather drivers, the needed memory pointers will be found in the
scatterlist structure described above. Drivers using the vmalloc() method
can get a memory pointer with:
void *videobuf_to_vmalloc(struct videobuf_buffer *buf);
For contiguous DMA drivers, the function to use is:
dma_addr_t videobuf_to_dma_contig(struct videobuf_buffer *buf);
The contiguous DMA API goes out of its way to hide the kernel-space address
of the DMA buffer from drivers.
The final step is to set the size field of the relevant videobuf_buffer
structure to the actual size of the captured image, set state to
VIDEOBUF_DONE, then call wake_up() on the done queue. At this point, the
buffer is owned by the videobuf layer and the driver should not touch it
again.
Developers who are interested in more information can go into the relevant
header files; there are a few low-level functions declared there which have
not been talked about here. Also worthwhile is the vivi driver
(drivers/media/video/vivi.c), which is maintained as an example of how V4L2
drivers should be written. Vivi only uses the vmalloc() API, but it's good
enough to get started with. Note also that all of these calls are exported
GPL-only, so they will not be available to non-GPL kernel modules.
...@@ -4693,6 +4693,13 @@ F: drivers/media/common/saa7146* ...@@ -4693,6 +4693,13 @@ F: drivers/media/common/saa7146*
F: drivers/media/video/*7146* F: drivers/media/video/*7146*
F: include/media/*7146* F: include/media/*7146*
TLG2300 VIDEO4LINUX-2 DRIVER
M: Huang Shijie <shijie8@gmail.com>
M: Kang Yong <kangyong@telegent.com>
M: Zhang Xiaobing <xbzhang@telegent.com>
S: Supported
F: drivers/media/video/tlg2300
SC1200 WDT DRIVER SC1200 WDT DRIVER
M: Zwane Mwaikambo <zwane@arm.linux.org.uk> M: Zwane Mwaikambo <zwane@arm.linux.org.uk>
S: Maintained S: Maintained
......
...@@ -37,6 +37,8 @@ ...@@ -37,6 +37,8 @@
#include <mach/nand.h> #include <mach/nand.h>
#include <mach/keyscan.h> #include <mach/keyscan.h>
#include <media/tvp514x.h>
static inline int have_imager(void) static inline int have_imager(void)
{ {
/* REVISIT when it's supported, trigger via Kconfig */ /* REVISIT when it's supported, trigger via Kconfig */
...@@ -306,6 +308,73 @@ static void dm365evm_mmc_configure(void) ...@@ -306,6 +308,73 @@ static void dm365evm_mmc_configure(void)
davinci_cfg_reg(DM365_SD1_DATA0); davinci_cfg_reg(DM365_SD1_DATA0);
} }
static struct tvp514x_platform_data tvp5146_pdata = {
.clk_polarity = 0,
.hs_polarity = 1,
.vs_polarity = 1
};
#define TVP514X_STD_ALL (V4L2_STD_NTSC | V4L2_STD_PAL)
/* Inputs available at the TVP5146 */
static struct v4l2_input tvp5146_inputs[] = {
{
.index = 0,
.name = "Composite",
.type = V4L2_INPUT_TYPE_CAMERA,
.std = TVP514X_STD_ALL,
},
{
.index = 1,
.name = "S-Video",
.type = V4L2_INPUT_TYPE_CAMERA,
.std = TVP514X_STD_ALL,
},
};
/*
* this is the route info for connecting each input to decoder
* ouput that goes to vpfe. There is a one to one correspondence
* with tvp5146_inputs
*/
static struct vpfe_route tvp5146_routes[] = {
{
.input = INPUT_CVBS_VI2B,
.output = OUTPUT_10BIT_422_EMBEDDED_SYNC,
},
{
.input = INPUT_SVIDEO_VI2C_VI1C,
.output = OUTPUT_10BIT_422_EMBEDDED_SYNC,
},
};
static struct vpfe_subdev_info vpfe_sub_devs[] = {
{
.name = "tvp5146",
.grp_id = 0,
.num_inputs = ARRAY_SIZE(tvp5146_inputs),
.inputs = tvp5146_inputs,
.routes = tvp5146_routes,
.can_route = 1,
.ccdc_if_params = {
.if_type = VPFE_BT656,
.hdpol = VPFE_PINPOL_POSITIVE,
.vdpol = VPFE_PINPOL_POSITIVE,
},
.board_info = {
I2C_BOARD_INFO("tvp5146", 0x5d),
.platform_data = &tvp5146_pdata,
},
},
};
static struct vpfe_config vpfe_cfg = {
.num_subdevs = ARRAY_SIZE(vpfe_sub_devs),
.sub_devs = vpfe_sub_devs,
.i2c_adapter_id = 1,
.card_name = "DM365 EVM",
.ccdc = "ISIF",
};
static void __init evm_init_i2c(void) static void __init evm_init_i2c(void)
{ {
davinci_init_i2c(&i2c_pdata); davinci_init_i2c(&i2c_pdata);
...@@ -497,6 +566,8 @@ static struct davinci_uart_config uart_config __initdata = { ...@@ -497,6 +566,8 @@ static struct davinci_uart_config uart_config __initdata = {
static void __init dm365_evm_map_io(void) static void __init dm365_evm_map_io(void)
{ {
/* setup input configuration for VPFE input devices */
dm365_set_vpfe_config(&vpfe_cfg);
dm365_init(); dm365_init();
} }
......
...@@ -125,7 +125,6 @@ static struct clk vpss_slave_clk = { ...@@ -125,7 +125,6 @@ static struct clk vpss_slave_clk = {
.lpsc = DAVINCI_LPSC_VPSSSLV, .lpsc = DAVINCI_LPSC_VPSSSLV,
}; };
static struct clk clkout1_clk = { static struct clk clkout1_clk = {
.name = "clkout1", .name = "clkout1",
.parent = &pll1_aux_clk, .parent = &pll1_aux_clk,
...@@ -665,6 +664,17 @@ static struct platform_device dm355_asp1_device = { ...@@ -665,6 +664,17 @@ static struct platform_device dm355_asp1_device = {
.resource = dm355_asp1_resources, .resource = dm355_asp1_resources,
}; };
static void dm355_ccdc_setup_pinmux(void)
{
davinci_cfg_reg(DM355_VIN_PCLK);
davinci_cfg_reg(DM355_VIN_CAM_WEN);
davinci_cfg_reg(DM355_VIN_CAM_VD);
davinci_cfg_reg(DM355_VIN_CAM_HD);
davinci_cfg_reg(DM355_VIN_YIN_EN);
davinci_cfg_reg(DM355_VIN_CINL_EN);
davinci_cfg_reg(DM355_VIN_CINH_EN);
}
static struct resource dm355_vpss_resources[] = { static struct resource dm355_vpss_resources[] = {
{ {
/* VPSS BL Base address */ /* VPSS BL Base address */
...@@ -701,6 +711,10 @@ static struct resource vpfe_resources[] = { ...@@ -701,6 +711,10 @@ static struct resource vpfe_resources[] = {
.end = IRQ_VDINT1, .end = IRQ_VDINT1,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
};
static u64 vpfe_capture_dma_mask = DMA_BIT_MASK(32);
static struct resource dm355_ccdc_resource[] = {
/* CCDC Base address */ /* CCDC Base address */
{ {
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
...@@ -708,8 +722,18 @@ static struct resource vpfe_resources[] = { ...@@ -708,8 +722,18 @@ static struct resource vpfe_resources[] = {
.end = 0x01c70600 + 0x1ff, .end = 0x01c70600 + 0x1ff,
}, },
}; };
static struct platform_device dm355_ccdc_dev = {
.name = "dm355_ccdc",
.id = -1,
.num_resources = ARRAY_SIZE(dm355_ccdc_resource),
.resource = dm355_ccdc_resource,
.dev = {
.dma_mask = &vpfe_capture_dma_mask,
.coherent_dma_mask = DMA_BIT_MASK(32),
.platform_data = dm355_ccdc_setup_pinmux,
},
};
static u64 vpfe_capture_dma_mask = DMA_BIT_MASK(32);
static struct platform_device vpfe_capture_dev = { static struct platform_device vpfe_capture_dev = {
.name = CAPTURE_DRV_NAME, .name = CAPTURE_DRV_NAME,
.id = -1, .id = -1,
...@@ -857,20 +881,13 @@ static int __init dm355_init_devices(void) ...@@ -857,20 +881,13 @@ static int __init dm355_init_devices(void)
if (!cpu_is_davinci_dm355()) if (!cpu_is_davinci_dm355())
return 0; return 0;
/* Add ccdc clock aliases */
clk_add_alias("master", dm355_ccdc_dev.name, "vpss_master", NULL);
clk_add_alias("slave", dm355_ccdc_dev.name, "vpss_master", NULL);
davinci_cfg_reg(DM355_INT_EDMA_CC); davinci_cfg_reg(DM355_INT_EDMA_CC);
platform_device_register(&dm355_edma_device); platform_device_register(&dm355_edma_device);
platform_device_register(&dm355_vpss_device); platform_device_register(&dm355_vpss_device);
/* platform_device_register(&dm355_ccdc_dev);
* setup Mux configuration for vpfe input and register
* vpfe capture platform device
*/
davinci_cfg_reg(DM355_VIN_PCLK);
davinci_cfg_reg(DM355_VIN_CAM_WEN);
davinci_cfg_reg(DM355_VIN_CAM_VD);
davinci_cfg_reg(DM355_VIN_CAM_HD);
davinci_cfg_reg(DM355_VIN_YIN_EN);
davinci_cfg_reg(DM355_VIN_CINL_EN);
davinci_cfg_reg(DM355_VIN_CINH_EN);
platform_device_register(&vpfe_capture_dev); platform_device_register(&vpfe_capture_dev);
return 0; return 0;
......
...@@ -1008,6 +1008,97 @@ void __init dm365_init(void) ...@@ -1008,6 +1008,97 @@ void __init dm365_init(void)
davinci_common_init(&davinci_soc_info_dm365); davinci_common_init(&davinci_soc_info_dm365);
} }
static struct resource dm365_vpss_resources[] = {
{
/* VPSS ISP5 Base address */
.name = "isp5",
.start = 0x01c70000,
.end = 0x01c70000 + 0xff,
.flags = IORESOURCE_MEM,
},
{
/* VPSS CLK Base address */
.name = "vpss",
.start = 0x01c70200,
.end = 0x01c70200 + 0xff,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device dm365_vpss_device = {
.name = "vpss",
.id = -1,
.dev.platform_data = "dm365_vpss",
.num_resources = ARRAY_SIZE(dm365_vpss_resources),
.resource = dm365_vpss_resources,
};
static struct resource vpfe_resources[] = {
{
.start = IRQ_VDINT0,
.end = IRQ_VDINT0,
.flags = IORESOURCE_IRQ,
},
{
.start = IRQ_VDINT1,
.end = IRQ_VDINT1,
.flags = IORESOURCE_IRQ,
},
};
static u64 vpfe_capture_dma_mask = DMA_BIT_MASK(32);
static struct platform_device vpfe_capture_dev = {
.name = CAPTURE_DRV_NAME,
.id = -1,
.num_resources = ARRAY_SIZE(vpfe_resources),
.resource = vpfe_resources,
.dev = {
.dma_mask = &vpfe_capture_dma_mask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
};
static void dm365_isif_setup_pinmux(void)
{
davinci_cfg_reg(DM365_VIN_CAM_WEN);
davinci_cfg_reg(DM365_VIN_CAM_VD);
davinci_cfg_reg(DM365_VIN_CAM_HD);
davinci_cfg_reg(DM365_VIN_YIN4_7_EN);
davinci_cfg_reg(DM365_VIN_YIN0_3_EN);
}
static struct resource isif_resource[] = {
/* ISIF Base address */
{
.start = 0x01c71000,
.end = 0x01c71000 + 0x1ff,
.flags = IORESOURCE_MEM,
},
/* ISIF Linearization table 0 */
{
.start = 0x1C7C000,
.end = 0x1C7C000 + 0x2ff,
.flags = IORESOURCE_MEM,
},
/* ISIF Linearization table 1 */
{
.start = 0x1C7C400,
.end = 0x1C7C400 + 0x2ff,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device dm365_isif_dev = {
.name = "isif",
.id = -1,
.num_resources = ARRAY_SIZE(isif_resource),
.resource = isif_resource,
.dev = {
.dma_mask = &vpfe_capture_dma_mask,
.coherent_dma_mask = DMA_BIT_MASK(32),
.platform_data = dm365_isif_setup_pinmux,
},
};
static int __init dm365_init_devices(void) static int __init dm365_init_devices(void)
{ {
if (!cpu_is_davinci_dm365()) if (!cpu_is_davinci_dm365())
...@@ -1016,7 +1107,16 @@ static int __init dm365_init_devices(void) ...@@ -1016,7 +1107,16 @@ static int __init dm365_init_devices(void)
davinci_cfg_reg(DM365_INT_EDMA_CC); davinci_cfg_reg(DM365_INT_EDMA_CC);
platform_device_register(&dm365_edma_device); platform_device_register(&dm365_edma_device);
platform_device_register(&dm365_emac_device); platform_device_register(&dm365_emac_device);
/* Add isif clock alias */
clk_add_alias("master", dm365_isif_dev.name, "vpss_master", NULL);
platform_device_register(&dm365_vpss_device);
platform_device_register(&dm365_isif_dev);
platform_device_register(&vpfe_capture_dev);
return 0; return 0;
} }
postcore_initcall(dm365_init_devices); postcore_initcall(dm365_init_devices);
void dm365_set_vpfe_config(struct vpfe_config *cfg)
{
vpfe_capture_dev.dev.platform_data = cfg;
}
...@@ -612,6 +612,11 @@ static struct resource vpfe_resources[] = { ...@@ -612,6 +612,11 @@ static struct resource vpfe_resources[] = {
.end = IRQ_VDINT1, .end = IRQ_VDINT1,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
};
static u64 vpfe_capture_dma_mask = DMA_BIT_MASK(32);
static struct resource dm644x_ccdc_resource[] = {
/* CCDC Base address */
{ {
.start = 0x01c70400, .start = 0x01c70400,
.end = 0x01c70400 + 0xff, .end = 0x01c70400 + 0xff,
...@@ -619,7 +624,17 @@ static struct resource vpfe_resources[] = { ...@@ -619,7 +624,17 @@ static struct resource vpfe_resources[] = {
}, },
}; };
static u64 vpfe_capture_dma_mask = DMA_BIT_MASK(32); static struct platform_device dm644x_ccdc_dev = {
.name = "dm644x_ccdc",
.id = -1,
.num_resources = ARRAY_SIZE(dm644x_ccdc_resource),
.resource = dm644x_ccdc_resource,
.dev = {
.dma_mask = &vpfe_capture_dma_mask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
};
static struct platform_device vpfe_capture_dev = { static struct platform_device vpfe_capture_dev = {
.name = CAPTURE_DRV_NAME, .name = CAPTURE_DRV_NAME,
.id = -1, .id = -1,
...@@ -769,9 +784,13 @@ static int __init dm644x_init_devices(void) ...@@ -769,9 +784,13 @@ static int __init dm644x_init_devices(void)
if (!cpu_is_davinci_dm644x()) if (!cpu_is_davinci_dm644x())
return 0; return 0;
/* Add ccdc clock aliases */
clk_add_alias("master", dm644x_ccdc_dev.name, "vpss_master", NULL);
clk_add_alias("slave", dm644x_ccdc_dev.name, "vpss_slave", NULL);
platform_device_register(&dm644x_edma_device); platform_device_register(&dm644x_edma_device);
platform_device_register(&dm644x_emac_device); platform_device_register(&dm644x_emac_device);
platform_device_register(&dm644x_vpss_device); platform_device_register(&dm644x_vpss_device);
platform_device_register(&dm644x_ccdc_dev);
platform_device_register(&vpfe_capture_dev); platform_device_register(&vpfe_capture_dev);
return 0; return 0;
......
...@@ -18,6 +18,7 @@ ...@@ -18,6 +18,7 @@
#include <mach/emac.h> #include <mach/emac.h>
#include <mach/asp.h> #include <mach/asp.h>
#include <mach/keyscan.h> #include <mach/keyscan.h>
#include <media/davinci/vpfe_capture.h>
#define DM365_EMAC_BASE (0x01D07000) #define DM365_EMAC_BASE (0x01D07000)
#define DM365_EMAC_CNTRL_OFFSET (0x0000) #define DM365_EMAC_CNTRL_OFFSET (0x0000)
...@@ -36,4 +37,5 @@ void __init dm365_init_asp(struct snd_platform_data *pdata); ...@@ -36,4 +37,5 @@ void __init dm365_init_asp(struct snd_platform_data *pdata);
void __init dm365_init_ks(struct davinci_ks_platform_data *pdata); void __init dm365_init_ks(struct davinci_ks_platform_data *pdata);
void __init dm365_init_rtc(void); void __init dm365_init_rtc(void);
void dm365_set_vpfe_config(struct vpfe_config *cfg);
#endif /* __ASM_ARCH_DM365_H */ #endif /* __ASM_ARCH_DM365_H */
...@@ -35,8 +35,6 @@ ...@@ -35,8 +35,6 @@
#define PXA_CAMERA_VSP 0x400 #define PXA_CAMERA_VSP 0x400
struct pxacamera_platform_data { struct pxacamera_platform_data {
int (*init)(struct device *);
unsigned long flags; unsigned long flags;
unsigned long mclk_10khz; unsigned long mclk_10khz;
}; };
......
...@@ -471,8 +471,8 @@ static struct i2c_board_info ap325rxa_i2c_camera[] = { ...@@ -471,8 +471,8 @@ static struct i2c_board_info ap325rxa_i2c_camera[] = {
}; };
static struct ov772x_camera_info ov7725_info = { static struct ov772x_camera_info ov7725_info = {
.buswidth = SOCAM_DATAWIDTH_8, .flags = OV772X_FLAG_VFLIP | OV772X_FLAG_HFLIP | \
.flags = OV772X_FLAG_VFLIP | OV772X_FLAG_HFLIP, OV772X_FLAG_8BIT,
.edgectrl = OV772X_AUTO_EDGECTRL(0xf, 0), .edgectrl = OV772X_AUTO_EDGECTRL(0xf, 0),
}; };
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment