Skip to content
Snippets Groups Projects
Commit 1366c37e authored by Matthew Wilcox's avatar Matthew Wilcox Committed by Linus Torvalds
Browse files

radix tree test harness

This code is mostly from Andrew Morton and Nick Piggin; tarball downloaded
from http://ozlabs.org/~akpm/rtth.tar.gz

 with sha1sum
0ce679db9ec047296b5d1ff7a1dfaa03a7bef1bd

Some small modifications were necessary to the test harness to fix the
build with the current Linux source code.

I also made minor modifications to automatically test the radix-tree.c
and radix-tree.h files that are in the current source tree, as opposed
to a copied and slightly modified version.  I am sure more could be done
to tidy up the harness, as well as adding more tests.

[koct9i@gmail.com: fix compilation]
Signed-off-by: default avatarMatthew Wilcox <willy@linux.intel.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: default avatarKonstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent f67c07f0
No related branches found
No related tags found
No related merge requests found
Showing
with 709 additions and 0 deletions
main
radix-tree.c
CFLAGS += -I. -g -Wall -D_LGPL_SOURCE
LDFLAGS += -lpthread -lurcu
TARGETS = main
OFILES = main.o radix-tree.o linux.o test.o tag_check.o find_next_bit.o \
regression1.o regression2.o
targets: $(TARGETS)
main: $(OFILES)
$(CC) $(CFLAGS) $(LDFLAGS) $(OFILES) -o main
clean:
$(RM) -f $(TARGETS) *.o radix-tree.c
$(OFILES): *.h */*.h
radix-tree.c: ../../../lib/radix-tree.c
sed -e 's/^static //' -e 's/__always_inline //' -e 's/inline //' < $< > $@
/* find_next_bit.c: fallback find next bit implementation
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#include <linux/bitops.h>
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
/*
* Find the next set bit in a memory region.
*/
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
const unsigned long *p = addr + BITOP_WORD(offset);
unsigned long result = offset & ~(BITS_PER_LONG-1);
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset %= BITS_PER_LONG;
if (offset) {
tmp = *(p++);
tmp &= (~0UL << offset);
if (size < BITS_PER_LONG)
goto found_first;
if (tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
}
while (size & ~(BITS_PER_LONG-1)) {
if ((tmp = *(p++)))
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= (~0UL >> (BITS_PER_LONG - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __ffs(tmp);
}
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <unistd.h>
#include <assert.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <urcu/uatomic.h>
int nr_allocated;
void *mempool_alloc(mempool_t *pool, int gfp_mask)
{
return pool->alloc(gfp_mask, pool->data);
}
void mempool_free(void *element, mempool_t *pool)
{
pool->free(element, pool->data);
}
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
mempool_t *ret = malloc(sizeof(*ret));
ret->alloc = alloc_fn;
ret->free = free_fn;
ret->data = pool_data;
return ret;
}
void *kmem_cache_alloc(struct kmem_cache *cachep, int flags)
{
void *ret = malloc(cachep->size);
if (cachep->ctor)
cachep->ctor(ret);
uatomic_inc(&nr_allocated);
return ret;
}
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
{
assert(objp);
uatomic_dec(&nr_allocated);
memset(objp, 0, cachep->size);
free(objp);
}
struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t offset,
unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *ret = malloc(sizeof(*ret));
ret->size = size;
ret->ctor = ctor;
return ret;
}
#ifndef _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#define _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#include <linux/types.h>
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p &= ~mask;
}
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p ^= mask;
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
/* WARNING: non atomic and it can be reordered! */
static inline int __test_and_change_bit(int nr,
volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old ^ mask;
return (old & mask) != 0;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
int num = 0;
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
unsigned long find_next_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset);
#endif /* _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ */
#ifndef _ASM_GENERIC_BITOPS___FFS_H_
#define _ASM_GENERIC_BITOPS___FFS_H_
#include <asm/types.h>
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
int num = 0;
#if BITS_PER_LONG == 64
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
#endif
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
#endif /* _ASM_GENERIC_BITOPS___FFS_H_ */
#ifndef _ASM_GENERIC_BITOPS_FFS_H_
#define _ASM_GENERIC_BITOPS_FFS_H_
/**
* ffs - find first bit set
* @x: the word to search
*
* This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int ffs(int x)
{
int r = 1;
if (!x)
return 0;
if (!(x & 0xffff)) {
x >>= 16;
r += 16;
}
if (!(x & 0xff)) {
x >>= 8;
r += 8;
}
if (!(x & 0xf)) {
x >>= 4;
r += 4;
}
if (!(x & 3)) {
x >>= 2;
r += 2;
}
if (!(x & 1)) {
x >>= 1;
r += 1;
}
return r;
}
#endif /* _ASM_GENERIC_BITOPS_FFS_H_ */
#ifndef _ASM_GENERIC_BITOPS_FFZ_H_
#define _ASM_GENERIC_BITOPS_FFZ_H_
/*
* ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
#define ffz(x) __ffs(~(x))
#endif /* _ASM_GENERIC_BITOPS_FFZ_H_ */
#ifndef _ASM_GENERIC_BITOPS_FIND_H_
#define _ASM_GENERIC_BITOPS_FIND_H_
extern unsigned long find_next_bit(const unsigned long *addr, unsigned long
size, unsigned long offset);
extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned
long size, unsigned long offset);
#define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
#endif /*_ASM_GENERIC_BITOPS_FIND_H_ */
#ifndef _ASM_GENERIC_BITOPS_FLS_H_
#define _ASM_GENERIC_BITOPS_FLS_H_
/**
* fls - find last (most-significant) bit set
* @x: the word to search
*
* This is defined the same way as ffs.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
static inline int fls(int x)
{
int r = 32;
if (!x)
return 0;
if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
}
if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
}
if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
}
if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
}
if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
}
return r;
}
#endif /* _ASM_GENERIC_BITOPS_FLS_H_ */
#ifndef _ASM_GENERIC_BITOPS_FLS64_H_
#define _ASM_GENERIC_BITOPS_FLS64_H_
#include <asm/types.h>
static inline int fls64(__u64 x)
{
__u32 h = x >> 32;
if (h)
return fls(h) + 32;
return fls(x);
}
#endif /* _ASM_GENERIC_BITOPS_FLS64_H_ */
#ifndef _ASM_GENERIC_BITOPS_HWEIGHT_H_
#define _ASM_GENERIC_BITOPS_HWEIGHT_H_
#include <asm/types.h>
extern unsigned int hweight32(unsigned int w);
extern unsigned int hweight16(unsigned int w);
extern unsigned int hweight8(unsigned int w);
extern unsigned long hweight64(__u64 w);
#endif /* _ASM_GENERIC_BITOPS_HWEIGHT_H_ */
#ifndef _ASM_GENERIC_BITOPS_LE_H_
#define _ASM_GENERIC_BITOPS_LE_H_
#include <asm/types.h>
#include <asm/byteorder.h>
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
#if defined(__LITTLE_ENDIAN)
#define generic_test_le_bit(nr, addr) test_bit(nr, addr)
#define generic___set_le_bit(nr, addr) __set_bit(nr, addr)
#define generic___clear_le_bit(nr, addr) __clear_bit(nr, addr)
#define generic_test_and_set_le_bit(nr, addr) test_and_set_bit(nr, addr)
#define generic_test_and_clear_le_bit(nr, addr) test_and_clear_bit(nr, addr)
#define generic___test_and_set_le_bit(nr, addr) __test_and_set_bit(nr, addr)
#define generic___test_and_clear_le_bit(nr, addr) __test_and_clear_bit(nr, addr)
#define generic_find_next_zero_le_bit(addr, size, offset) find_next_zero_bit(addr, size, offset)
#elif defined(__BIG_ENDIAN)
#define generic_test_le_bit(nr, addr) \
test_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___set_le_bit(nr, addr) \
__set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___clear_le_bit(nr, addr) \
__clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic_test_and_set_le_bit(nr, addr) \
test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic_test_and_clear_le_bit(nr, addr) \
test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___test_and_set_le_bit(nr, addr) \
__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___test_and_clear_le_bit(nr, addr) \
__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
extern unsigned long generic_find_next_zero_le_bit(const unsigned long *addr,
unsigned long size, unsigned long offset);
#else
#error "Please fix <asm/byteorder.h>"
#endif
#define generic_find_first_zero_le_bit(addr, size) \
generic_find_next_zero_le_bit((addr), (size), 0)
#endif /* _ASM_GENERIC_BITOPS_LE_H_ */
#ifndef _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#define _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#include <asm/types.h>
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p &= ~mask;
}
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p ^= mask;
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
/* WARNING: non atomic and it can be reordered! */
static inline int __test_and_change_bit(int nr,
volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old ^ mask;
return (old & mask) != 0;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
#endif /* _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ */
#define WARN_ON_ONCE(x) assert(x)
#define hotcpu_notifier(a, b)
#define CPU_ONLINE 0x0002 /* CPU (unsigned)v is up */
#define CPU_UP_PREPARE 0x0003 /* CPU (unsigned)v coming up */
#define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
#define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
#define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */
#define CPU_DEAD 0x0007 /* CPU (unsigned)v dead */
#define CPU_DYING 0x0008 /* CPU (unsigned)v not running any task,
* not handling interrupts, soon dead.
* Called on the dying cpu, interrupts
* are already disabled. Must not
* sleep, must not fail */
#define CPU_POST_DEAD 0x0009 /* CPU (unsigned)v dead, cpu_hotplug
* lock is dropped */
#define CPU_STARTING 0x000A /* CPU (unsigned)v soon running.
* Called on the new cpu, just before
* enabling interrupts. Must not sleep,
* must not fail */
#define CPU_DYING_IDLE 0x000B /* CPU (unsigned)v dying, reached
* idle loop. */
#define CPU_BROKEN 0x000C /* CPU (unsigned)v did not die properly,
* perhaps due to preemption. */
#define CPU_TASKS_FROZEN 0x0010
#define CPU_ONLINE_FROZEN (CPU_ONLINE | CPU_TASKS_FROZEN)
#define CPU_UP_PREPARE_FROZEN (CPU_UP_PREPARE | CPU_TASKS_FROZEN)
#define CPU_UP_CANCELED_FROZEN (CPU_UP_CANCELED | CPU_TASKS_FROZEN)
#define CPU_DOWN_PREPARE_FROZEN (CPU_DOWN_PREPARE | CPU_TASKS_FROZEN)
#define CPU_DOWN_FAILED_FROZEN (CPU_DOWN_FAILED | CPU_TASKS_FROZEN)
#define CPU_DEAD_FROZEN (CPU_DEAD | CPU_TASKS_FROZEN)
#define CPU_DYING_FROZEN (CPU_DYING | CPU_TASKS_FROZEN)
#define CPU_STARTING_FROZEN (CPU_STARTING | CPU_TASKS_FROZEN)
#define EXPORT_SYMBOL(sym)
#ifndef _GFP_H
#define _GFP_H
#define __GFP_BITS_SHIFT 22
#define __GFP_BITS_MASK ((gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
#define __GFP_WAIT 1
#define __GFP_ACCOUNT 0
#define __GFP_NOWARN 0
#endif
#ifndef _KERNEL_H
#define _KERNEL_H
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stddef.h>
#include <limits.h>
#ifndef NULL
#define NULL 0
#endif
#define BUG_ON(expr) assert(!(expr))
#define __init
#define panic(expr)
#define printk printf
#define __force
#define likely(c) (c)
#define unlikely(c) (c)
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type, member) );})
#define min(a, b) ((a) < (b) ? (a) : (b))
static inline int in_interrupt(void)
{
return 0;
}
#endif /* _KERNEL_H */
static inline void kmemleak_update_trace(const void *ptr) { }
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment