Skip to content
Snippets Groups Projects
Select Git revision
  • fcbded019855136a3d99d74ef8b44e8f87120fb2
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-b79-tlv-note
  • seco_lf-6.6.52-2.2.1_d18-e71
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-2/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_d18-e83
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-1/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-sai
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

c_can.c

Blame
  • user avatar
    Dario Binacchi authored and Marc Kleine-Budde committed
    The arbitration register is already set up with 32-bit writes in the
    other parts of the code except for this point.
    
    Link: https://lore.kernel.org/r/20210302215435.18286-5-dariobin@libero.it
    
    
    Signed-off-by: default avatarDario Binacchi <dariobin@libero.it>
    Signed-off-by: default avatarMarc Kleine-Budde <mkl@pengutronix.de>
    fcbded01
    History
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    c_can.c 33.65 KiB
    /*
     * CAN bus driver for Bosch C_CAN controller
     *
     * Copyright (C) 2010 ST Microelectronics
     * Bhupesh Sharma <bhupesh.sharma@st.com>
     *
     * Borrowed heavily from the C_CAN driver originally written by:
     * Copyright (C) 2007
     * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
     * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
     *
     * TX and RX NAPI implementation has been borrowed from at91 CAN driver
     * written by:
     * Copyright
     * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
     * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
     *
     * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
     * Bosch C_CAN user manual can be obtained from:
     * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
     * users_manual_c_can.pdf
     *
     * This file is licensed under the terms of the GNU General Public
     * License version 2. This program is licensed "as is" without any
     * warranty of any kind, whether express or implied.
     */
    
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/interrupt.h>
    #include <linux/delay.h>
    #include <linux/netdevice.h>
    #include <linux/if_arp.h>
    #include <linux/if_ether.h>
    #include <linux/list.h>
    #include <linux/io.h>
    #include <linux/pm_runtime.h>
    #include <linux/pinctrl/consumer.h>
    
    #include <linux/can.h>
    #include <linux/can/dev.h>
    #include <linux/can/error.h>
    #include <linux/can/led.h>
    
    #include "c_can.h"
    
    /* Number of interface registers */
    #define IF_ENUM_REG_LEN		11
    #define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
    
    /* control extension register D_CAN specific */
    #define CONTROL_EX_PDR		BIT(8)
    
    /* control register */
    #define CONTROL_SWR		BIT(15)
    #define CONTROL_TEST		BIT(7)
    #define CONTROL_CCE		BIT(6)
    #define CONTROL_DISABLE_AR	BIT(5)
    #define CONTROL_ENABLE_AR	(0 << 5)
    #define CONTROL_EIE		BIT(3)
    #define CONTROL_SIE		BIT(2)
    #define CONTROL_IE		BIT(1)
    #define CONTROL_INIT		BIT(0)
    
    #define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
    
    /* test register */
    #define TEST_RX			BIT(7)
    #define TEST_TX1		BIT(6)
    #define TEST_TX2		BIT(5)
    #define TEST_LBACK		BIT(4)
    #define TEST_SILENT		BIT(3)
    #define TEST_BASIC		BIT(2)
    
    /* status register */
    #define STATUS_PDA		BIT(10)
    #define STATUS_BOFF		BIT(7)
    #define STATUS_EWARN		BIT(6)
    #define STATUS_EPASS		BIT(5)
    #define STATUS_RXOK		BIT(4)
    #define STATUS_TXOK		BIT(3)
    
    /* error counter register */
    #define ERR_CNT_TEC_MASK	0xff
    #define ERR_CNT_TEC_SHIFT	0
    #define ERR_CNT_REC_SHIFT	8
    #define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
    #define ERR_CNT_RP_SHIFT	15
    #define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
    
    /* bit-timing register */
    #define BTR_BRP_MASK		0x3f
    #define BTR_BRP_SHIFT		0
    #define BTR_SJW_SHIFT		6
    #define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
    #define BTR_TSEG1_SHIFT		8
    #define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
    #define BTR_TSEG2_SHIFT		12
    #define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
    
    /* interrupt register */
    #define INT_STS_PENDING		0x8000
    
    /* brp extension register */
    #define BRP_EXT_BRPE_MASK	0x0f
    #define BRP_EXT_BRPE_SHIFT	0
    
    /* IFx command request */
    #define IF_COMR_BUSY		BIT(15)
    
    /* IFx command mask */
    #define IF_COMM_WR		BIT(7)
    #define IF_COMM_MASK		BIT(6)
    #define IF_COMM_ARB		BIT(5)
    #define IF_COMM_CONTROL		BIT(4)
    #define IF_COMM_CLR_INT_PND	BIT(3)
    #define IF_COMM_TXRQST		BIT(2)
    #define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
    #define IF_COMM_DATAA		BIT(1)
    #define IF_COMM_DATAB		BIT(0)
    
    /* TX buffer setup */
    #define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
    				 IF_COMM_TXRQST |		 \
    				 IF_COMM_DATAA | IF_COMM_DATAB)
    
    /* For the low buffers we clear the interrupt bit, but keep newdat */
    #define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
    				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
    				 IF_COMM_DATAA | IF_COMM_DATAB)
    
    /* For the high buffers we clear the interrupt bit and newdat */
    #define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
    
    /* Receive setup of message objects */
    #define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
    
    /* Invalidation of message objects */
    #define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
    
    /* IFx arbitration */
    #define IF_ARB_MSGVAL		BIT(31)
    #define IF_ARB_MSGXTD		BIT(30)
    #define IF_ARB_TRANSMIT		BIT(29)
    
    /* IFx message control */
    #define IF_MCONT_NEWDAT		BIT(15)
    #define IF_MCONT_MSGLST		BIT(14)
    #define IF_MCONT_INTPND		BIT(13)
    #define IF_MCONT_UMASK		BIT(12)
    #define IF_MCONT_TXIE		BIT(11)
    #define IF_MCONT_RXIE		BIT(10)
    #define IF_MCONT_RMTEN		BIT(9)
    #define IF_MCONT_TXRQST		BIT(8)
    #define IF_MCONT_EOB		BIT(7)
    #define IF_MCONT_DLC_MASK	0xf
    
    #define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
    #define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
    
    #define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
    
    /* Use IF1 for RX and IF2 for TX */
    #define IF_RX			0
    #define IF_TX			1
    
    /* minimum timeout for checking BUSY status */
    #define MIN_TIMEOUT_VALUE	6
    
    /* Wait for ~1 sec for INIT bit */
    #define INIT_WAIT_MS		1000
    
    /* napi related */
    #define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
    
    /* c_can lec values */
    enum c_can_lec_type {
    	LEC_NO_ERROR = 0,
    	LEC_STUFF_ERROR,
    	LEC_FORM_ERROR,
    	LEC_ACK_ERROR,
    	LEC_BIT1_ERROR,
    	LEC_BIT0_ERROR,
    	LEC_CRC_ERROR,
    	LEC_UNUSED,
    	LEC_MASK = LEC_UNUSED,
    };
    
    /* c_can error types:
     * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
     */
    enum c_can_bus_error_types {
    	C_CAN_NO_ERROR = 0,
    	C_CAN_BUS_OFF,
    	C_CAN_ERROR_WARNING,
    	C_CAN_ERROR_PASSIVE,
    };
    
    static const struct can_bittiming_const c_can_bittiming_const = {
    	.name = KBUILD_MODNAME,
    	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
    	.tseg1_max = 16,
    	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
    	.tseg2_max = 8,
    	.sjw_max = 4,
    	.brp_min = 1,
    	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
    	.brp_inc = 1,
    };
    
    static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
    {
    	if (priv->device)
    		pm_runtime_get_sync(priv->device);
    }
    
    static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
    {
    	if (priv->device)
    		pm_runtime_put_sync(priv->device);
    }
    
    static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
    {
    	if (priv->raminit)
    		priv->raminit(priv, enable);
    }
    
    static void c_can_irq_control(struct c_can_priv *priv, bool enable)
    {
    	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
    
    	if (enable)
    		ctrl |= CONTROL_IRQMSK;
    
    	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
    }
    
    static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
    
    	priv->write_reg32(priv, reg, (cmd << 16) | obj);
    
    	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
    		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
    			return;
    		udelay(1);
    	}
    	netdev_err(dev, "Updating object timed out\n");
    }
    
    static inline void c_can_object_get(struct net_device *dev, int iface,
    				    u32 obj, u32 cmd)
    {
    	c_can_obj_update(dev, iface, cmd, obj);
    }
    
    static inline void c_can_object_put(struct net_device *dev, int iface,
    				    u32 obj, u32 cmd)
    {
    	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
    }
    
    /* Note: According to documentation clearing TXIE while MSGVAL is set
     * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
     * load significantly.
     */
    static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
    	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
    }
    
    static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
    	c_can_inval_tx_object(dev, iface, obj);
    }
    
    static void c_can_setup_tx_object(struct net_device *dev, int iface,
    				  struct can_frame *frame, int idx)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	u16 ctrl = IF_MCONT_TX | frame->len;
    	bool rtr = frame->can_id & CAN_RTR_FLAG;
    	u32 arb = IF_ARB_MSGVAL;
    	int i;
    
    	if (frame->can_id & CAN_EFF_FLAG) {
    		arb |= frame->can_id & CAN_EFF_MASK;
    		arb |= IF_ARB_MSGXTD;
    	} else {
    		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
    	}
    
    	if (!rtr)
    		arb |= IF_ARB_TRANSMIT;
    
    	/* If we change the DIR bit, we need to invalidate the buffer
    	 * first, i.e. clear the MSGVAL flag in the arbiter.
    	 */
    	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
    		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
    
    		c_can_inval_msg_object(dev, iface, obj);
    		change_bit(idx, &priv->tx_dir);
    	}
    
    	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
    
    	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
    
    	if (priv->type == BOSCH_D_CAN) {
    		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
    
    		for (i = 0; i < frame->len; i += 4, dreg += 2) {
    			data = (u32)frame->data[i];
    			data |= (u32)frame->data[i + 1] << 8;
    			data |= (u32)frame->data[i + 2] << 16;
    			data |= (u32)frame->data[i + 3] << 24;
    			priv->write_reg32(priv, dreg, data);
    		}
    	} else {
    		for (i = 0; i < frame->len; i += 2) {
    			priv->write_reg(priv,
    					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
    					frame->data[i] |
    					(frame->data[i + 1] << 8));
    		}
    	}
    }
    
    static int c_can_handle_lost_msg_obj(struct net_device *dev,
    				     int iface, int objno, u32 ctrl)
    {
    	struct net_device_stats *stats = &dev->stats;
    	struct c_can_priv *priv = netdev_priv(dev);
    	struct can_frame *frame;
    	struct sk_buff *skb;
    
    	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
    	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
    	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
    
    	stats->rx_errors++;
    	stats->rx_over_errors++;
    
    	/* create an error msg */
    	skb = alloc_can_err_skb(dev, &frame);
    	if (unlikely(!skb))
    		return 0;
    
    	frame->can_id |= CAN_ERR_CRTL;
    	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
    
    	netif_receive_skb(skb);
    	return 1;
    }
    
    static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
    {
    	struct net_device_stats *stats = &dev->stats;
    	struct c_can_priv *priv = netdev_priv(dev);
    	struct can_frame *frame;
    	struct sk_buff *skb;
    	u32 arb, data;
    
    	skb = alloc_can_skb(dev, &frame);
    	if (!skb) {
    		stats->rx_dropped++;
    		return -ENOMEM;
    	}
    
    	frame->len = can_cc_dlc2len(ctrl & 0x0F);
    
    	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
    
    	if (arb & IF_ARB_MSGXTD)
    		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
    	else
    		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
    
    	if (arb & IF_ARB_TRANSMIT) {
    		frame->can_id |= CAN_RTR_FLAG;
    	} else {
    		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
    
    		if (priv->type == BOSCH_D_CAN) {
    			for (i = 0; i < frame->len; i += 4, dreg += 2) {
    				data = priv->read_reg32(priv, dreg);
    				frame->data[i] = data;
    				frame->data[i + 1] = data >> 8;
    				frame->data[i + 2] = data >> 16;
    				frame->data[i + 3] = data >> 24;
    			}
    		} else {
    			for (i = 0; i < frame->len; i += 2, dreg++) {
    				data = priv->read_reg(priv, dreg);
    				frame->data[i] = data;
    				frame->data[i + 1] = data >> 8;
    			}
    		}
    	}
    
    	stats->rx_packets++;
    	stats->rx_bytes += frame->len;
    
    	netif_receive_skb(skb);
    	return 0;
    }
    
    static void c_can_setup_receive_object(struct net_device *dev, int iface,
    				       u32 obj, u32 mask, u32 id, u32 mcont)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	mask |= BIT(29);
    	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
    
    	id |= IF_ARB_MSGVAL;
    	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
    
    	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
    	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
    }
    
    static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
    				    struct net_device *dev)
    {
    	struct can_frame *frame = (struct can_frame *)skb->data;
    	struct c_can_priv *priv = netdev_priv(dev);
    	u32 idx, obj;
    
    	if (can_dropped_invalid_skb(dev, skb))
    		return NETDEV_TX_OK;
    	/* This is not a FIFO. C/D_CAN sends out the buffers
    	 * prioritized. The lowest buffer number wins.
    	 */
    	idx = fls(atomic_read(&priv->tx_active));
    	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
    
    	/* If this is the last buffer, stop the xmit queue */
    	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
    		netif_stop_queue(dev);
    	/* Store the message in the interface so we can call
    	 * can_put_echo_skb(). We must do this before we enable
    	 * transmit as we might race against do_tx().
    	 */
    	c_can_setup_tx_object(dev, IF_TX, frame, idx);
    	priv->dlc[idx] = frame->len;
    	can_put_echo_skb(skb, dev, idx, 0);
    
    	/* Update the active bits */
    	atomic_add((1 << idx), &priv->tx_active);
    	/* Start transmission */
    	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
    
    	return NETDEV_TX_OK;
    }
    
    static int c_can_wait_for_ctrl_init(struct net_device *dev,
    				    struct c_can_priv *priv, u32 init)
    {
    	int retry = 0;
    
    	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
    		udelay(10);
    		if (retry++ > 1000) {
    			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
    			return -EIO;
    		}
    	}
    	return 0;
    }
    
    static int c_can_set_bittiming(struct net_device *dev)
    {
    	unsigned int reg_btr, reg_brpe, ctrl_save;
    	u8 brp, brpe, sjw, tseg1, tseg2;
    	u32 ten_bit_brp;
    	struct c_can_priv *priv = netdev_priv(dev);
    	const struct can_bittiming *bt = &priv->can.bittiming;
    	int res;
    
    	/* c_can provides a 6-bit brp and 4-bit brpe fields */
    	ten_bit_brp = bt->brp - 1;
    	brp = ten_bit_brp & BTR_BRP_MASK;
    	brpe = ten_bit_brp >> 6;
    
    	sjw = bt->sjw - 1;
    	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
    	tseg2 = bt->phase_seg2 - 1;
    	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
    			(tseg2 << BTR_TSEG2_SHIFT);
    	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
    
    	netdev_info(dev,
    		    "setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
    
    	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
    	ctrl_save &= ~CONTROL_INIT;
    	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
    	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
    	if (res)
    		return res;
    
    	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
    	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
    	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
    
    	return c_can_wait_for_ctrl_init(dev, priv, 0);
    }
    
    /* Configure C_CAN message objects for Tx and Rx purposes:
     * C_CAN provides a total of 32 message objects that can be configured
     * either for Tx or Rx purposes. Here the first 16 message objects are used as
     * a reception FIFO. The end of reception FIFO is signified by the EoB bit
     * being SET. The remaining 16 message objects are kept aside for Tx purposes.
     * See user guide document for further details on configuring message
     * objects.
     */
    static void c_can_configure_msg_objects(struct net_device *dev)
    {
    	int i;
    
    	/* first invalidate all message objects */
    	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
    		c_can_inval_msg_object(dev, IF_RX, i);
    
    	/* setup receive message objects */
    	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
    		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
    
    	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
    				   IF_MCONT_RCV_EOB);
    }
    
    static int c_can_software_reset(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	int retry = 0;
    
    	if (priv->type != BOSCH_D_CAN)
    		return 0;
    
    	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
    	while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
    		msleep(20);
    		if (retry++ > 100) {
    			netdev_err(dev, "CCTRL: software reset failed\n");
    			return -EIO;
    		}
    	}
    
    	return 0;
    }
    
    /* Configure C_CAN chip:
     * - enable/disable auto-retransmission
     * - set operating mode
     * - configure message objects
     */
    static int c_can_chip_config(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	int err;
    
    	err = c_can_software_reset(dev);
    	if (err)
    		return err;
    
    	/* enable automatic retransmission */
    	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
    
    	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
    	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
    		/* loopback + silent mode : useful for hot self-test */
    		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
    		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
    	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
    		/* loopback mode : useful for self-test function */
    		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
    		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
    	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
    		/* silent mode : bus-monitoring mode */
    		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
    		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
    	}
    
    	/* configure message objects */
    	c_can_configure_msg_objects(dev);
    
    	/* set a `lec` value so that we can check for updates later */
    	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
    
    	/* Clear all internal status */
    	atomic_set(&priv->tx_active, 0);
    	priv->rxmasked = 0;
    	priv->tx_dir = 0;
    
    	/* set bittiming params */
    	return c_can_set_bittiming(dev);
    }
    
    static int c_can_start(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	int err;
    	struct pinctrl *p;
    
    	/* basic c_can configuration */
    	err = c_can_chip_config(dev);
    	if (err)
    		return err;
    
    	/* Setup the command for new messages */
    	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
    		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
    
    	priv->can.state = CAN_STATE_ERROR_ACTIVE;
    
    	/* Attempt to use "active" if available else use "default" */
    	p = pinctrl_get_select(priv->device, "active");
    	if (!IS_ERR(p))
    		pinctrl_put(p);
    	else
    		pinctrl_pm_select_default_state(priv->device);
    
    	return 0;
    }
    
    static void c_can_stop(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	c_can_irq_control(priv, false);
    
    	/* put ctrl to init on stop to end ongoing transmission */
    	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
    
    	/* deactivate pins */
    	pinctrl_pm_select_sleep_state(dev->dev.parent);
    	priv->can.state = CAN_STATE_STOPPED;
    }
    
    static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	int err;
    
    	switch (mode) {
    	case CAN_MODE_START:
    		err = c_can_start(dev);
    		if (err)
    			return err;
    		netif_wake_queue(dev);
    		c_can_irq_control(priv, true);
    		break;
    	default:
    		return -EOPNOTSUPP;
    	}
    
    	return 0;
    }
    
    static int __c_can_get_berr_counter(const struct net_device *dev,
    				    struct can_berr_counter *bec)
    {
    	unsigned int reg_err_counter;
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
    	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
    				ERR_CNT_REC_SHIFT;
    	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
    
    	return 0;
    }
    
    static int c_can_get_berr_counter(const struct net_device *dev,
    				  struct can_berr_counter *bec)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	int err;
    
    	c_can_pm_runtime_get_sync(priv);
    	err = __c_can_get_berr_counter(dev, bec);
    	c_can_pm_runtime_put_sync(priv);
    
    	return err;
    }
    
    static void c_can_do_tx(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
    
    	pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
    	clr = pend;
    
    	while ((idx = ffs(pend))) {
    		idx--;
    		pend &= ~(1 << idx);
    		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
    
    		/* We use IF_RX interface instead of IF_TX because we
    		 * are called from c_can_poll(), which runs inside
    		 * NAPI. We are not trasmitting.
    		 */
    		c_can_inval_tx_object(dev, IF_RX, obj);
    		can_get_echo_skb(dev, idx, NULL);
    		bytes += priv->dlc[idx];
    		pkts++;
    	}
    
    	/* Clear the bits in the tx_active mask */
    	atomic_sub(clr, &priv->tx_active);
    
    	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
    		netif_wake_queue(dev);
    
    	if (pkts) {
    		stats->tx_bytes += bytes;
    		stats->tx_packets += pkts;
    		can_led_event(dev, CAN_LED_EVENT_TX);
    	}
    }
    
    /* If we have a gap in the pending bits, that means we either
     * raced with the hardware or failed to readout all upper
     * objects in the last run due to quota limit.
     */
    static u32 c_can_adjust_pending(u32 pend)
    {
    	u32 weight, lasts;
    
    	if (pend == RECEIVE_OBJECT_BITS)
    		return pend;
    
    	/* If the last set bit is larger than the number of pending
    	 * bits we have a gap.
    	 */
    	weight = hweight32(pend);
    	lasts = fls(pend);
    
    	/* If the bits are linear, nothing to do */
    	if (lasts == weight)
    		return pend;
    
    	/* Find the first set bit after the gap. We walk backwards
    	 * from the last set bit.
    	 */
    	for (lasts--; pend & (1 << (lasts - 1)); lasts--)
    		;
    
    	return pend & ~((1 << lasts) - 1);
    }
    
    static inline void c_can_rx_object_get(struct net_device *dev,
    				       struct c_can_priv *priv, u32 obj)
    {
    	c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
    }
    
    static inline void c_can_rx_finalize(struct net_device *dev,
    				     struct c_can_priv *priv, u32 obj)
    {
    	if (priv->type != BOSCH_D_CAN)
    		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
    }
    
    static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
    			      u32 pend, int quota)
    {
    	u32 pkts = 0, ctrl, obj;
    
    	while ((obj = ffs(pend)) && quota > 0) {
    		pend &= ~BIT(obj - 1);
    
    		c_can_rx_object_get(dev, priv, obj);
    		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
    
    		if (ctrl & IF_MCONT_MSGLST) {
    			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
    
    			pkts += n;
    			quota -= n;
    			continue;
    		}
    
    		/* This really should not happen, but this covers some
    		 * odd HW behaviour. Do not remove that unless you
    		 * want to brick your machine.
    		 */
    		if (!(ctrl & IF_MCONT_NEWDAT))
    			continue;
    
    		/* read the data from the message object */
    		c_can_read_msg_object(dev, IF_RX, ctrl);
    
    		c_can_rx_finalize(dev, priv, obj);
    
    		pkts++;
    		quota--;
    	}
    
    	return pkts;
    }
    
    static inline u32 c_can_get_pending(struct c_can_priv *priv)
    {
    	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
    
    	return pend;
    }
    
    /* theory of operation:
     *
     * c_can core saves a received CAN message into the first free message
     * object it finds free (starting with the lowest). Bits NEWDAT and
     * INTPND are set for this message object indicating that a new message
     * has arrived.
     *
     * We clear the newdat bit right away.
     *
     * This can result in packet reordering when the readout is slow.
     */
    static int c_can_do_rx_poll(struct net_device *dev, int quota)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	u32 pkts = 0, pend = 0, toread, n;
    
    	/* It is faster to read only one 16bit register. This is only possible
    	 * for a maximum number of 16 objects.
    	 */
    	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
    			 "Implementation does not support more message objects than 16");
    
    	while (quota > 0) {
    		if (!pend) {
    			pend = c_can_get_pending(priv);
    			if (!pend)
    				break;
    			/* If the pending field has a gap, handle the
    			 * bits above the gap first.
    			 */
    			toread = c_can_adjust_pending(pend);
    		} else {
    			toread = pend;
    		}
    		/* Remove the bits from pend */
    		pend &= ~toread;
    		/* Read the objects */
    		n = c_can_read_objects(dev, priv, toread, quota);
    		pkts += n;
    		quota -= n;
    	}
    
    	if (pkts)
    		can_led_event(dev, CAN_LED_EVENT_RX);
    
    	return pkts;
    }
    
    static int c_can_handle_state_change(struct net_device *dev,
    				     enum c_can_bus_error_types error_type)
    {
    	unsigned int reg_err_counter;
    	unsigned int rx_err_passive;
    	struct c_can_priv *priv = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    	struct can_frame *cf;
    	struct sk_buff *skb;
    	struct can_berr_counter bec;
    
    	switch (error_type) {
    	case C_CAN_NO_ERROR:
    		priv->can.state = CAN_STATE_ERROR_ACTIVE;
    		break;
    	case C_CAN_ERROR_WARNING:
    		/* error warning state */
    		priv->can.can_stats.error_warning++;
    		priv->can.state = CAN_STATE_ERROR_WARNING;
    		break;
    	case C_CAN_ERROR_PASSIVE:
    		/* error passive state */
    		priv->can.can_stats.error_passive++;
    		priv->can.state = CAN_STATE_ERROR_PASSIVE;
    		break;
    	case C_CAN_BUS_OFF:
    		/* bus-off state */
    		priv->can.state = CAN_STATE_BUS_OFF;
    		priv->can.can_stats.bus_off++;
    		break;
    	default:
    		break;
    	}
    
    	/* propagate the error condition to the CAN stack */
    	skb = alloc_can_err_skb(dev, &cf);
    	if (unlikely(!skb))
    		return 0;
    
    	__c_can_get_berr_counter(dev, &bec);
    	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
    	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
    				ERR_CNT_RP_SHIFT;
    
    	switch (error_type) {
    	case C_CAN_NO_ERROR:
    		/* error warning state */
    		cf->can_id |= CAN_ERR_CRTL;
    		cf->data[1] = CAN_ERR_CRTL_ACTIVE;
    		cf->data[6] = bec.txerr;
    		cf->data[7] = bec.rxerr;
    		break;
    	case C_CAN_ERROR_WARNING:
    		/* error warning state */
    		cf->can_id |= CAN_ERR_CRTL;
    		cf->data[1] = (bec.txerr > bec.rxerr) ?
    			CAN_ERR_CRTL_TX_WARNING :
    			CAN_ERR_CRTL_RX_WARNING;
    		cf->data[6] = bec.txerr;
    		cf->data[7] = bec.rxerr;
    
    		break;
    	case C_CAN_ERROR_PASSIVE:
    		/* error passive state */
    		cf->can_id |= CAN_ERR_CRTL;
    		if (rx_err_passive)
    			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
    		if (bec.txerr > 127)
    			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
    
    		cf->data[6] = bec.txerr;
    		cf->data[7] = bec.rxerr;
    		break;
    	case C_CAN_BUS_OFF:
    		/* bus-off state */
    		cf->can_id |= CAN_ERR_BUSOFF;
    		can_bus_off(dev);
    		break;
    	default:
    		break;
    	}
    
    	stats->rx_packets++;
    	stats->rx_bytes += cf->len;
    	netif_receive_skb(skb);
    
    	return 1;
    }
    
    static int c_can_handle_bus_err(struct net_device *dev,
    				enum c_can_lec_type lec_type)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    	struct net_device_stats *stats = &dev->stats;
    	struct can_frame *cf;
    	struct sk_buff *skb;
    
    	/* early exit if no lec update or no error.
    	 * no lec update means that no CAN bus event has been detected
    	 * since CPU wrote 0x7 value to status reg.
    	 */
    	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
    		return 0;
    
    	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
    		return 0;
    
    	/* common for all type of bus errors */
    	priv->can.can_stats.bus_error++;
    	stats->rx_errors++;
    
    	/* propagate the error condition to the CAN stack */
    	skb = alloc_can_err_skb(dev, &cf);
    	if (unlikely(!skb))
    		return 0;
    
    	/* check for 'last error code' which tells us the
    	 * type of the last error to occur on the CAN bus
    	 */
    	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
    
    	switch (lec_type) {
    	case LEC_STUFF_ERROR:
    		netdev_dbg(dev, "stuff error\n");
    		cf->data[2] |= CAN_ERR_PROT_STUFF;
    		break;
    	case LEC_FORM_ERROR:
    		netdev_dbg(dev, "form error\n");
    		cf->data[2] |= CAN_ERR_PROT_FORM;
    		break;
    	case LEC_ACK_ERROR:
    		netdev_dbg(dev, "ack error\n");
    		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
    		break;
    	case LEC_BIT1_ERROR:
    		netdev_dbg(dev, "bit1 error\n");
    		cf->data[2] |= CAN_ERR_PROT_BIT1;
    		break;
    	case LEC_BIT0_ERROR:
    		netdev_dbg(dev, "bit0 error\n");
    		cf->data[2] |= CAN_ERR_PROT_BIT0;
    		break;
    	case LEC_CRC_ERROR:
    		netdev_dbg(dev, "CRC error\n");
    		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
    		break;
    	default:
    		break;
    	}
    
    	stats->rx_packets++;
    	stats->rx_bytes += cf->len;
    	netif_receive_skb(skb);
    	return 1;
    }
    
    static int c_can_poll(struct napi_struct *napi, int quota)
    {
    	struct net_device *dev = napi->dev;
    	struct c_can_priv *priv = netdev_priv(dev);
    	u16 curr, last = priv->last_status;
    	int work_done = 0;
    
    	/* Only read the status register if a status interrupt was pending */
    	if (atomic_xchg(&priv->sie_pending, 0)) {
    		priv->last_status = priv->read_reg(priv, C_CAN_STS_REG);
    		curr = priv->last_status;
    		/* Ack status on C_CAN. D_CAN is self clearing */
    		if (priv->type != BOSCH_D_CAN)
    			priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
    	} else {
    		/* no change detected ... */
    		curr = last;
    	}
    
    	/* handle state changes */
    	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
    		netdev_dbg(dev, "entered error warning state\n");
    		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
    	}
    
    	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
    		netdev_dbg(dev, "entered error passive state\n");
    		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
    	}
    
    	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
    		netdev_dbg(dev, "entered bus off state\n");
    		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
    		goto end;
    	}
    
    	/* handle bus recovery events */
    	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
    		netdev_dbg(dev, "left bus off state\n");
    		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
    	}
    
    	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
    		netdev_dbg(dev, "left error passive state\n");
    		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
    	}
    
    	if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
    		netdev_dbg(dev, "left error warning state\n");
    		work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
    	}
    
    	/* handle lec errors on the bus */
    	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
    
    	/* Handle Tx/Rx events. We do this unconditionally */
    	work_done += c_can_do_rx_poll(dev, (quota - work_done));
    	c_can_do_tx(dev);
    
    end:
    	if (work_done < quota) {
    		napi_complete_done(napi, work_done);
    		/* enable all IRQs if we are not in bus off state */
    		if (priv->can.state != CAN_STATE_BUS_OFF)
    			c_can_irq_control(priv, true);
    	}
    
    	return work_done;
    }
    
    static irqreturn_t c_can_isr(int irq, void *dev_id)
    {
    	struct net_device *dev = (struct net_device *)dev_id;
    	struct c_can_priv *priv = netdev_priv(dev);
    	int reg_int;
    
    	reg_int = priv->read_reg(priv, C_CAN_INT_REG);
    	if (!reg_int)
    		return IRQ_NONE;
    
    	/* save for later use */
    	if (reg_int & INT_STS_PENDING)
    		atomic_set(&priv->sie_pending, 1);
    
    	/* disable all interrupts and schedule the NAPI */
    	c_can_irq_control(priv, false);
    	napi_schedule(&priv->napi);
    
    	return IRQ_HANDLED;
    }
    
    static int c_can_open(struct net_device *dev)
    {
    	int err;
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	c_can_pm_runtime_get_sync(priv);
    	c_can_reset_ram(priv, true);
    
    	/* open the can device */
    	err = open_candev(dev);
    	if (err) {
    		netdev_err(dev, "failed to open can device\n");
    		goto exit_open_fail;
    	}
    
    	/* register interrupt handler */
    	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
    			  dev);
    	if (err < 0) {
    		netdev_err(dev, "failed to request interrupt\n");
    		goto exit_irq_fail;
    	}
    
    	/* start the c_can controller */
    	err = c_can_start(dev);
    	if (err)
    		goto exit_start_fail;
    
    	can_led_event(dev, CAN_LED_EVENT_OPEN);
    
    	napi_enable(&priv->napi);
    	/* enable status change, error and module interrupts */
    	c_can_irq_control(priv, true);
    	netif_start_queue(dev);
    
    	return 0;
    
    exit_start_fail:
    	free_irq(dev->irq, dev);
    exit_irq_fail:
    	close_candev(dev);
    exit_open_fail:
    	c_can_reset_ram(priv, false);
    	c_can_pm_runtime_put_sync(priv);
    	return err;
    }
    
    static int c_can_close(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	netif_stop_queue(dev);
    	napi_disable(&priv->napi);
    	c_can_stop(dev);
    	free_irq(dev->irq, dev);
    	close_candev(dev);
    
    	c_can_reset_ram(priv, false);
    	c_can_pm_runtime_put_sync(priv);
    
    	can_led_event(dev, CAN_LED_EVENT_STOP);
    
    	return 0;
    }
    
    struct net_device *alloc_c_can_dev(void)
    {
    	struct net_device *dev;
    	struct c_can_priv *priv;
    
    	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
    	if (!dev)
    		return NULL;
    
    	priv = netdev_priv(dev);
    	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
    
    	priv->dev = dev;
    	priv->can.bittiming_const = &c_can_bittiming_const;
    	priv->can.do_set_mode = c_can_set_mode;
    	priv->can.do_get_berr_counter = c_can_get_berr_counter;
    	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
    					CAN_CTRLMODE_LISTENONLY |
    					CAN_CTRLMODE_BERR_REPORTING;
    
    	return dev;
    }
    EXPORT_SYMBOL_GPL(alloc_c_can_dev);
    
    #ifdef CONFIG_PM
    int c_can_power_down(struct net_device *dev)
    {
    	u32 val;
    	unsigned long time_out;
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	if (!(dev->flags & IFF_UP))
    		return 0;
    
    	WARN_ON(priv->type != BOSCH_D_CAN);
    
    	/* set PDR value so the device goes to power down mode */
    	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
    	val |= CONTROL_EX_PDR;
    	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
    
    	/* Wait for the PDA bit to get set */
    	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
    	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
    	       time_after(time_out, jiffies))
    		cpu_relax();
    
    	if (time_after(jiffies, time_out))
    		return -ETIMEDOUT;
    
    	c_can_stop(dev);
    
    	c_can_reset_ram(priv, false);
    	c_can_pm_runtime_put_sync(priv);
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(c_can_power_down);
    
    int c_can_power_up(struct net_device *dev)
    {
    	u32 val;
    	unsigned long time_out;
    	struct c_can_priv *priv = netdev_priv(dev);
    	int ret;
    
    	if (!(dev->flags & IFF_UP))
    		return 0;
    
    	WARN_ON(priv->type != BOSCH_D_CAN);
    
    	c_can_pm_runtime_get_sync(priv);
    	c_can_reset_ram(priv, true);
    
    	/* Clear PDR and INIT bits */
    	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
    	val &= ~CONTROL_EX_PDR;
    	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
    	val = priv->read_reg(priv, C_CAN_CTRL_REG);
    	val &= ~CONTROL_INIT;
    	priv->write_reg(priv, C_CAN_CTRL_REG, val);
    
    	/* Wait for the PDA bit to get clear */
    	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
    	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
    	       time_after(time_out, jiffies))
    		cpu_relax();
    
    	if (time_after(jiffies, time_out)) {
    		ret = -ETIMEDOUT;
    		goto err_out;
    	}
    
    	ret = c_can_start(dev);
    	if (ret)
    		goto err_out;
    
    	c_can_irq_control(priv, true);
    
    	return 0;
    
    err_out:
    	c_can_reset_ram(priv, false);
    	c_can_pm_runtime_put_sync(priv);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(c_can_power_up);
    #endif
    
    void free_c_can_dev(struct net_device *dev)
    {
    	struct c_can_priv *priv = netdev_priv(dev);
    
    	netif_napi_del(&priv->napi);
    	free_candev(dev);
    }
    EXPORT_SYMBOL_GPL(free_c_can_dev);
    
    static const struct net_device_ops c_can_netdev_ops = {
    	.ndo_open = c_can_open,
    	.ndo_stop = c_can_close,
    	.ndo_start_xmit = c_can_start_xmit,
    	.ndo_change_mtu = can_change_mtu,
    };
    
    int register_c_can_dev(struct net_device *dev)
    {
    	int err;
    
    	/* Deactivate pins to prevent DRA7 DCAN IP from being
    	 * stuck in transition when module is disabled.
    	 * Pins are activated in c_can_start() and deactivated
    	 * in c_can_stop()
    	 */
    	pinctrl_pm_select_sleep_state(dev->dev.parent);
    
    	dev->flags |= IFF_ECHO;	/* we support local echo */
    	dev->netdev_ops = &c_can_netdev_ops;
    
    	err = register_candev(dev);
    	if (!err)
    		devm_can_led_init(dev);
    	return err;
    }
    EXPORT_SYMBOL_GPL(register_c_can_dev);
    
    void unregister_c_can_dev(struct net_device *dev)
    {
    	unregister_candev(dev);
    }
    EXPORT_SYMBOL_GPL(unregister_c_can_dev);
    
    MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
    MODULE_LICENSE("GPL v2");
    MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");