Skip to content
Snippets Groups Projects
Select Git revision
  • fba0e1a3cfcc1d61e593f97650e18931a2aa1fc8
  • seco_lf-6.6.52-2.2.1 default protected
  • integrate/gitlab-ci/cleaos-916-jira-jql-api/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_d18-e83
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-b79-tlv-note
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-2/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-1/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-sai
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

fec_main.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    fec_main.c 69.42 KiB
    /*
     * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
     * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
     *
     * Right now, I am very wasteful with the buffers.  I allocate memory
     * pages and then divide them into 2K frame buffers.  This way I know I
     * have buffers large enough to hold one frame within one buffer descriptor.
     * Once I get this working, I will use 64 or 128 byte CPM buffers, which
     * will be much more memory efficient and will easily handle lots of
     * small packets.
     *
     * Much better multiple PHY support by Magnus Damm.
     * Copyright (c) 2000 Ericsson Radio Systems AB.
     *
     * Support for FEC controller of ColdFire processors.
     * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
     *
     * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
     * Copyright (c) 2004-2006 Macq Electronique SA.
     *
     * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/string.h>
    #include <linux/ptrace.h>
    #include <linux/errno.h>
    #include <linux/ioport.h>
    #include <linux/slab.h>
    #include <linux/interrupt.h>
    #include <linux/delay.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/skbuff.h>
    #include <linux/in.h>
    #include <linux/ip.h>
    #include <net/ip.h>
    #include <net/tso.h>
    #include <linux/tcp.h>
    #include <linux/udp.h>
    #include <linux/icmp.h>
    #include <linux/spinlock.h>
    #include <linux/workqueue.h>
    #include <linux/bitops.h>
    #include <linux/io.h>
    #include <linux/irq.h>
    #include <linux/clk.h>
    #include <linux/platform_device.h>
    #include <linux/phy.h>
    #include <linux/fec.h>
    #include <linux/of.h>
    #include <linux/of_device.h>
    #include <linux/of_gpio.h>
    #include <linux/of_net.h>
    #include <linux/regulator/consumer.h>
    #include <linux/if_vlan.h>
    #include <linux/pinctrl/consumer.h>
    
    #include <asm/cacheflush.h>
    
    #include "fec.h"
    
    static void set_multicast_list(struct net_device *ndev);
    
    #if defined(CONFIG_ARM)
    #define FEC_ALIGNMENT	0xf
    #else
    #define FEC_ALIGNMENT	0x3
    #endif
    
    #define DRIVER_NAME	"fec"
    
    /* Pause frame feild and FIFO threshold */
    #define FEC_ENET_FCE	(1 << 5)
    #define FEC_ENET_RSEM_V	0x84
    #define FEC_ENET_RSFL_V	16
    #define FEC_ENET_RAEM_V	0x8
    #define FEC_ENET_RAFL_V	0x8
    #define FEC_ENET_OPD_V	0xFFF0
    
    /* Controller is ENET-MAC */
    #define FEC_QUIRK_ENET_MAC		(1 << 0)
    /* Controller needs driver to swap frame */
    #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
    /* Controller uses gasket */
    #define FEC_QUIRK_USE_GASKET		(1 << 2)
    /* Controller has GBIT support */
    #define FEC_QUIRK_HAS_GBIT		(1 << 3)
    /* Controller has extend desc buffer */
    #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
    /* Controller has hardware checksum support */
    #define FEC_QUIRK_HAS_CSUM		(1 << 5)
    /* Controller has hardware vlan support */
    #define FEC_QUIRK_HAS_VLAN		(1 << 6)
    /* ENET IP errata ERR006358
     *
     * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
     * detected as not set during a prior frame transmission, then the
     * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
     * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
     * frames not being transmitted until there is a 0-to-1 transition on
     * ENET_TDAR[TDAR].
     */
    #define FEC_QUIRK_ERR006358            (1 << 7)
    
    static struct platform_device_id fec_devtype[] = {
    	{
    		/* keep it for coldfire */
    		.name = DRIVER_NAME,
    		.driver_data = 0,
    	}, {
    		.name = "imx25-fec",
    		.driver_data = FEC_QUIRK_USE_GASKET,
    	}, {
    		.name = "imx27-fec",
    		.driver_data = 0,
    	}, {
    		.name = "imx28-fec",
    		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
    	}, {
    		.name = "imx6q-fec",
    		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
    				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
    				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
    	}, {
    		.name = "mvf600-fec",
    		.driver_data = FEC_QUIRK_ENET_MAC,
    	}, {
    		/* sentinel */
    	}
    };
    MODULE_DEVICE_TABLE(platform, fec_devtype);
    
    enum imx_fec_type {
    	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
    	IMX27_FEC,	/* runs on i.mx27/35/51 */
    	IMX28_FEC,
    	IMX6Q_FEC,
    	MVF600_FEC,
    };
    
    static const struct of_device_id fec_dt_ids[] = {
    	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
    	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
    	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
    	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
    	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
    	{ /* sentinel */ }
    };
    MODULE_DEVICE_TABLE(of, fec_dt_ids);
    
    static unsigned char macaddr[ETH_ALEN];
    module_param_array(macaddr, byte, NULL, 0);
    MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
    
    #if defined(CONFIG_M5272)
    /*
     * Some hardware gets it MAC address out of local flash memory.
     * if this is non-zero then assume it is the address to get MAC from.
     */
    #if defined(CONFIG_NETtel)
    #define	FEC_FLASHMAC	0xf0006006
    #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
    #define	FEC_FLASHMAC	0xf0006000
    #elif defined(CONFIG_CANCam)
    #define	FEC_FLASHMAC	0xf0020000
    #elif defined (CONFIG_M5272C3)
    #define	FEC_FLASHMAC	(0xffe04000 + 4)
    #elif defined(CONFIG_MOD5272)
    #define FEC_FLASHMAC	0xffc0406b
    #else
    #define	FEC_FLASHMAC	0
    #endif
    #endif /* CONFIG_M5272 */
    
    /* Interrupt events/masks. */
    #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
    #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
    #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
    #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
    #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
    #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
    #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
    #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
    #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
    #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
    
    #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
    #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
    
    /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
     */
    #define PKT_MAXBUF_SIZE		1522
    #define PKT_MINBUF_SIZE		64
    #define PKT_MAXBLR_SIZE		1536
    
    /* FEC receive acceleration */
    #define FEC_RACC_IPDIS		(1 << 1)
    #define FEC_RACC_PRODIS		(1 << 2)
    #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
    
    /*
     * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
     * size bits. Other FEC hardware does not, so we need to take that into
     * account when setting it.
     */
    #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
        defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
    #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
    #else
    #define	OPT_FRAME_SIZE	0
    #endif
    
    /* FEC MII MMFR bits definition */
    #define FEC_MMFR_ST		(1 << 30)
    #define FEC_MMFR_OP_READ	(2 << 28)
    #define FEC_MMFR_OP_WRITE	(1 << 28)
    #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
    #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
    #define FEC_MMFR_TA		(2 << 16)
    #define FEC_MMFR_DATA(v)	(v & 0xffff)
    
    #define FEC_MII_TIMEOUT		30000 /* us */
    
    /* Transmitter timeout */
    #define TX_TIMEOUT (2 * HZ)
    
    #define FEC_PAUSE_FLAG_AUTONEG	0x1
    #define FEC_PAUSE_FLAG_ENABLE	0x2
    
    #define TSO_HEADER_SIZE		128
    /* Max number of allowed TCP segments for software TSO */
    #define FEC_MAX_TSO_SEGS	100
    #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
    
    #define IS_TSO_HEADER(txq, addr) \
    	((addr >= txq->tso_hdrs_dma) && \
    	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
    
    static int mii_cnt;
    
    static inline
    struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
    {
    	struct bufdesc *new_bd = bdp + 1;
    	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
    	struct bufdesc_ex *ex_base;
    	struct bufdesc *base;
    	int ring_size;
    
    	if (bdp >= fep->tx_bd_base) {
    		base = fep->tx_bd_base;
    		ring_size = fep->tx_ring_size;
    		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
    	} else {
    		base = fep->rx_bd_base;
    		ring_size = fep->rx_ring_size;
    		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
    	}
    
    	if (fep->bufdesc_ex)
    		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
    			ex_base : ex_new_bd);
    	else
    		return (new_bd >= (base + ring_size)) ?
    			base : new_bd;
    }
    
    static inline
    struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
    {
    	struct bufdesc *new_bd = bdp - 1;
    	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
    	struct bufdesc_ex *ex_base;
    	struct bufdesc *base;
    	int ring_size;
    
    	if (bdp >= fep->tx_bd_base) {
    		base = fep->tx_bd_base;
    		ring_size = fep->tx_ring_size;
    		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
    	} else {
    		base = fep->rx_bd_base;
    		ring_size = fep->rx_ring_size;
    		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
    	}
    
    	if (fep->bufdesc_ex)
    		return (struct bufdesc *)((ex_new_bd < ex_base) ?
    			(ex_new_bd + ring_size) : ex_new_bd);
    	else
    		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
    }
    
    static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
    				struct fec_enet_private *fep)
    {
    	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
    }
    
    static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
    {
    	int entries;
    
    	entries = ((const char *)fep->dirty_tx -
    			(const char *)fep->cur_tx) / fep->bufdesc_size - 1;
    
    	return entries > 0 ? entries : entries + fep->tx_ring_size;
    }
    
    static void *swap_buffer(void *bufaddr, int len)
    {
    	int i;
    	unsigned int *buf = bufaddr;
    
    	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
    		*buf = cpu_to_be32(*buf);
    
    	return bufaddr;
    }
    
    static int
    fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
    {
    	/* Only run for packets requiring a checksum. */
    	if (skb->ip_summed != CHECKSUM_PARTIAL)
    		return 0;
    
    	if (unlikely(skb_cow_head(skb, 0)))
    		return -1;
    
    	ip_hdr(skb)->check = 0;
    	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
    
    	return 0;
    }
    
    static void
    fec_enet_submit_work(struct bufdesc *bdp, struct fec_enet_private *fep)
    {
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	struct bufdesc *bdp_pre;
    
    	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
    	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
    	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
    		fep->delay_work.trig_tx = true;
    		schedule_delayed_work(&(fep->delay_work.delay_work),
    					msecs_to_jiffies(1));
    	}
    }
    
    static int
    fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	struct bufdesc *bdp = fep->cur_tx;
    	struct bufdesc_ex *ebdp;
    	int nr_frags = skb_shinfo(skb)->nr_frags;
    	int frag, frag_len;
    	unsigned short status;
    	unsigned int estatus = 0;
    	skb_frag_t *this_frag;
    	unsigned int index;
    	void *bufaddr;
    	int i;
    
    	for (frag = 0; frag < nr_frags; frag++) {
    		this_frag = &skb_shinfo(skb)->frags[frag];
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    		ebdp = (struct bufdesc_ex *)bdp;
    
    		status = bdp->cbd_sc;
    		status &= ~BD_ENET_TX_STATS;
    		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
    		frag_len = skb_shinfo(skb)->frags[frag].size;
    
    		/* Handle the last BD specially */
    		if (frag == nr_frags - 1) {
    			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
    			if (fep->bufdesc_ex) {
    				estatus |= BD_ENET_TX_INT;
    				if (unlikely(skb_shinfo(skb)->tx_flags &
    					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
    					estatus |= BD_ENET_TX_TS;
    			}
    		}
    
    		if (fep->bufdesc_ex) {
    			if (skb->ip_summed == CHECKSUM_PARTIAL)
    				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
    			ebdp->cbd_bdu = 0;
    			ebdp->cbd_esc = estatus;
    		}
    
    		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
    
    		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
    		if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
    			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
    			memcpy(fep->tx_bounce[index], bufaddr, frag_len);
    			bufaddr = fep->tx_bounce[index];
    
    			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
    				swap_buffer(bufaddr, frag_len);
    		}
    
    		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
    						frag_len, DMA_TO_DEVICE);
    		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
    			dev_kfree_skb_any(skb);
    			if (net_ratelimit())
    				netdev_err(ndev, "Tx DMA memory map failed\n");
    			goto dma_mapping_error;
    		}
    
    		bdp->cbd_datlen = frag_len;
    		bdp->cbd_sc = status;
    	}
    
    	fep->cur_tx = bdp;
    
    	return 0;
    
    dma_mapping_error:
    	bdp = fep->cur_tx;
    	for (i = 0; i < frag; i++) {
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
    				bdp->cbd_datlen, DMA_TO_DEVICE);
    	}
    	return NETDEV_TX_OK;
    }
    
    static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	int nr_frags = skb_shinfo(skb)->nr_frags;
    	struct bufdesc *bdp, *last_bdp;
    	void *bufaddr;
    	unsigned short status;
    	unsigned short buflen;
    	unsigned int estatus = 0;
    	unsigned int index;
    	int entries_free;
    	int ret;
    
    	entries_free = fec_enet_get_free_txdesc_num(fep);
    	if (entries_free < MAX_SKB_FRAGS + 1) {
    		dev_kfree_skb_any(skb);
    		if (net_ratelimit())
    			netdev_err(ndev, "NOT enough BD for SG!\n");
    		return NETDEV_TX_OK;
    	}
    
    	/* Protocol checksum off-load for TCP and UDP. */
    	if (fec_enet_clear_csum(skb, ndev)) {
    		dev_kfree_skb_any(skb);
    		return NETDEV_TX_OK;
    	}
    
    	/* Fill in a Tx ring entry */
    	bdp = fep->cur_tx;
    	status = bdp->cbd_sc;
    	status &= ~BD_ENET_TX_STATS;
    
    	/* Set buffer length and buffer pointer */
    	bufaddr = skb->data;
    	buflen = skb_headlen(skb);
    
    	index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
    	if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
    		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
    		memcpy(fep->tx_bounce[index], skb->data, buflen);
    		bufaddr = fep->tx_bounce[index];
    
    		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
    			swap_buffer(bufaddr, buflen);
    	}
    
    	/* Push the data cache so the CPM does not get stale memory
    	 * data.
    	 */
    	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
    					buflen, DMA_TO_DEVICE);
    	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
    		dev_kfree_skb_any(skb);
    		if (net_ratelimit())
    			netdev_err(ndev, "Tx DMA memory map failed\n");
    		return NETDEV_TX_OK;
    	}
    
    	if (nr_frags) {
    		ret = fec_enet_txq_submit_frag_skb(skb, ndev);
    		if (ret)
    			return ret;
    	} else {
    		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
    		if (fep->bufdesc_ex) {
    			estatus = BD_ENET_TX_INT;
    			if (unlikely(skb_shinfo(skb)->tx_flags &
    				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
    				estatus |= BD_ENET_TX_TS;
    		}
    	}
    
    	if (fep->bufdesc_ex) {
    
    		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    
    		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
    			fep->hwts_tx_en))
    			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
    
    		if (skb->ip_summed == CHECKSUM_PARTIAL)
    			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
    
    		ebdp->cbd_bdu = 0;
    		ebdp->cbd_esc = estatus;
    	}
    
    	last_bdp = fep->cur_tx;
    	index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
    	/* Save skb pointer */
    	fep->tx_skbuff[index] = skb;
    
    	bdp->cbd_datlen = buflen;
    
    	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
    	 * it's the last BD of the frame, and to put the CRC on the end.
    	 */
    	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
    	bdp->cbd_sc = status;
    
    	fec_enet_submit_work(bdp, fep);
    
    	/* If this was the last BD in the ring, start at the beginning again. */
    	bdp = fec_enet_get_nextdesc(last_bdp, fep);
    
    	skb_tx_timestamp(skb);
    
    	fep->cur_tx = bdp;
    
    	/* Trigger transmission start */
    	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
    
    	return 0;
    }
    
    static int
    fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
    			struct bufdesc *bdp, int index, char *data,
    			int size, bool last_tcp, bool is_last)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    	unsigned short status;
    	unsigned int estatus = 0;
    
    	status = bdp->cbd_sc;
    	status &= ~BD_ENET_TX_STATS;
    
    	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
    	bdp->cbd_datlen = size;
    
    	if (((unsigned long) data) & FEC_ALIGNMENT ||
    		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
    		memcpy(fep->tx_bounce[index], data, size);
    		data = fep->tx_bounce[index];
    
    		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
    			swap_buffer(data, size);
    	}
    
    	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
    					size, DMA_TO_DEVICE);
    	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
    		dev_kfree_skb_any(skb);
    		if (net_ratelimit())
    			netdev_err(ndev, "Tx DMA memory map failed\n");
    		return NETDEV_TX_BUSY;
    	}
    
    	if (fep->bufdesc_ex) {
    		if (skb->ip_summed == CHECKSUM_PARTIAL)
    			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
    		ebdp->cbd_bdu = 0;
    		ebdp->cbd_esc = estatus;
    	}
    
    	/* Handle the last BD specially */
    	if (last_tcp)
    		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
    	if (is_last) {
    		status |= BD_ENET_TX_INTR;
    		if (fep->bufdesc_ex)
    			ebdp->cbd_esc |= BD_ENET_TX_INT;
    	}
    
    	bdp->cbd_sc = status;
    
    	return 0;
    }
    
    static int
    fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
    			struct bufdesc *bdp, int index)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
    	struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    	void *bufaddr;
    	unsigned long dmabuf;
    	unsigned short status;
    	unsigned int estatus = 0;
    
    	status = bdp->cbd_sc;
    	status &= ~BD_ENET_TX_STATS;
    	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
    
    	bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
    	dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
    	if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
    		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
    		memcpy(fep->tx_bounce[index], skb->data, hdr_len);
    		bufaddr = fep->tx_bounce[index];
    
    		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
    			swap_buffer(bufaddr, hdr_len);
    
    		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
    					hdr_len, DMA_TO_DEVICE);
    		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
    			dev_kfree_skb_any(skb);
    			if (net_ratelimit())
    				netdev_err(ndev, "Tx DMA memory map failed\n");
    			return NETDEV_TX_BUSY;
    		}
    	}
    
    	bdp->cbd_bufaddr = dmabuf;
    	bdp->cbd_datlen = hdr_len;
    
    	if (fep->bufdesc_ex) {
    		if (skb->ip_summed == CHECKSUM_PARTIAL)
    			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
    		ebdp->cbd_bdu = 0;
    		ebdp->cbd_esc = estatus;
    	}
    
    	bdp->cbd_sc = status;
    
    	return 0;
    }
    
    static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
    	int total_len, data_left;
    	struct bufdesc *bdp = fep->cur_tx;
    	struct tso_t tso;
    	unsigned int index = 0;
    	int ret;
    
    	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
    		dev_kfree_skb_any(skb);
    		if (net_ratelimit())
    			netdev_err(ndev, "NOT enough BD for TSO!\n");
    		return NETDEV_TX_OK;
    	}
    
    	/* Protocol checksum off-load for TCP and UDP. */
    	if (fec_enet_clear_csum(skb, ndev)) {
    		dev_kfree_skb_any(skb);
    		return NETDEV_TX_OK;
    	}
    
    	/* Initialize the TSO handler, and prepare the first payload */
    	tso_start(skb, &tso);
    
    	total_len = skb->len - hdr_len;
    	while (total_len > 0) {
    		char *hdr;
    
    		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
    		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
    		total_len -= data_left;
    
    		/* prepare packet headers: MAC + IP + TCP */
    		hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
    		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
    		ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
    		if (ret)
    			goto err_release;
    
    		while (data_left > 0) {
    			int size;
    
    			size = min_t(int, tso.size, data_left);
    			bdp = fec_enet_get_nextdesc(bdp, fep);
    			index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
    			ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
    							size, size == data_left,
    							total_len == 0);
    			if (ret)
    				goto err_release;
    
    			data_left -= size;
    			tso_build_data(skb, &tso, size);
    		}
    
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    	}
    
    	/* Save skb pointer */
    	fep->tx_skbuff[index] = skb;
    
    	fec_enet_submit_work(bdp, fep);
    
    	skb_tx_timestamp(skb);
    	fep->cur_tx = bdp;
    
    	/* Trigger transmission start */
    	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
    
    	return 0;
    
    err_release:
    	/* TODO: Release all used data descriptors for TSO */
    	return ret;
    }
    
    static netdev_tx_t
    fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	int entries_free;
    	int ret;
    
    	if (skb_is_gso(skb))
    		ret = fec_enet_txq_submit_tso(skb, ndev);
    	else
    		ret = fec_enet_txq_submit_skb(skb, ndev);
    	if (ret)
    		return ret;
    
    	entries_free = fec_enet_get_free_txdesc_num(fep);
    	if (entries_free <= fep->tx_stop_threshold)
    		netif_stop_queue(ndev);
    
    	return NETDEV_TX_OK;
    }
    
    /* Init RX & TX buffer descriptors
     */
    static void fec_enet_bd_init(struct net_device *dev)
    {
    	struct fec_enet_private *fep = netdev_priv(dev);
    	struct bufdesc *bdp;
    	unsigned int i;
    
    	/* Initialize the receive buffer descriptors. */
    	bdp = fep->rx_bd_base;
    	for (i = 0; i < fep->rx_ring_size; i++) {
    
    		/* Initialize the BD for every fragment in the page. */
    		if (bdp->cbd_bufaddr)
    			bdp->cbd_sc = BD_ENET_RX_EMPTY;
    		else
    			bdp->cbd_sc = 0;
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    	}
    
    	/* Set the last buffer to wrap */
    	bdp = fec_enet_get_prevdesc(bdp, fep);
    	bdp->cbd_sc |= BD_SC_WRAP;
    
    	fep->cur_rx = fep->rx_bd_base;
    
    	/* ...and the same for transmit */
    	bdp = fep->tx_bd_base;
    	fep->cur_tx = bdp;
    	for (i = 0; i < fep->tx_ring_size; i++) {
    
    		/* Initialize the BD for every fragment in the page. */
    		bdp->cbd_sc = 0;
    		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
    			dev_kfree_skb_any(fep->tx_skbuff[i]);
    			fep->tx_skbuff[i] = NULL;
    		}
    		bdp->cbd_bufaddr = 0;
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    	}
    
    	/* Set the last buffer to wrap */
    	bdp = fec_enet_get_prevdesc(bdp, fep);
    	bdp->cbd_sc |= BD_SC_WRAP;
    	fep->dirty_tx = bdp;
    }
    
    /* This function is called to start or restart the FEC during a link
     * change.  This only happens when switching between half and full
     * duplex.
     */
    static void
    fec_restart(struct net_device *ndev, int duplex)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	int i;
    	u32 val;
    	u32 temp_mac[2];
    	u32 rcntl = OPT_FRAME_SIZE | 0x04;
    	u32 ecntl = 0x2; /* ETHEREN */
    
    	if (netif_running(ndev)) {
    		netif_device_detach(ndev);
    		napi_disable(&fep->napi);
    		netif_stop_queue(ndev);
    		netif_tx_lock_bh(ndev);
    	}
    
    	/* Whack a reset.  We should wait for this. */
    	writel(1, fep->hwp + FEC_ECNTRL);
    	udelay(10);
    
    	/*
    	 * enet-mac reset will reset mac address registers too,
    	 * so need to reconfigure it.
    	 */
    	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
    		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
    		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
    		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
    	}
    
    	/* Clear any outstanding interrupt. */
    	writel(0xffc00000, fep->hwp + FEC_IEVENT);
    
    	/* Set maximum receive buffer size. */
    	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
    
    	fec_enet_bd_init(ndev);
    
    	/* Set receive and transmit descriptor base. */
    	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
    	if (fep->bufdesc_ex)
    		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
    			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
    	else
    		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
    			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
    
    
    	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
    		if (fep->tx_skbuff[i]) {
    			dev_kfree_skb_any(fep->tx_skbuff[i]);
    			fep->tx_skbuff[i] = NULL;
    		}
    	}
    
    	/* Enable MII mode */
    	if (duplex) {
    		/* FD enable */
    		writel(0x04, fep->hwp + FEC_X_CNTRL);
    	} else {
    		/* No Rcv on Xmit */
    		rcntl |= 0x02;
    		writel(0x0, fep->hwp + FEC_X_CNTRL);
    	}
    
    	fep->full_duplex = duplex;
    
    	/* Set MII speed */
    	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
    
    #if !defined(CONFIG_M5272)
    	/* set RX checksum */
    	val = readl(fep->hwp + FEC_RACC);
    	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
    		val |= FEC_RACC_OPTIONS;
    	else
    		val &= ~FEC_RACC_OPTIONS;
    	writel(val, fep->hwp + FEC_RACC);
    #endif
    
    	/*
    	 * The phy interface and speed need to get configured
    	 * differently on enet-mac.
    	 */
    	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
    		/* Enable flow control and length check */
    		rcntl |= 0x40000000 | 0x00000020;
    
    		/* RGMII, RMII or MII */
    		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
    			rcntl |= (1 << 6);
    		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
    			rcntl |= (1 << 8);
    		else
    			rcntl &= ~(1 << 8);
    
    		/* 1G, 100M or 10M */
    		if (fep->phy_dev) {
    			if (fep->phy_dev->speed == SPEED_1000)
    				ecntl |= (1 << 5);
    			else if (fep->phy_dev->speed == SPEED_100)
    				rcntl &= ~(1 << 9);
    			else
    				rcntl |= (1 << 9);
    		}
    	} else {
    #ifdef FEC_MIIGSK_ENR
    		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
    			u32 cfgr;
    			/* disable the gasket and wait */
    			writel(0, fep->hwp + FEC_MIIGSK_ENR);
    			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
    				udelay(1);
    
    			/*
    			 * configure the gasket:
    			 *   RMII, 50 MHz, no loopback, no echo
    			 *   MII, 25 MHz, no loopback, no echo
    			 */
    			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
    				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
    			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
    				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
    			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
    
    			/* re-enable the gasket */
    			writel(2, fep->hwp + FEC_MIIGSK_ENR);
    		}
    #endif
    	}
    
    #if !defined(CONFIG_M5272)
    	/* enable pause frame*/
    	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
    	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
    	     fep->phy_dev && fep->phy_dev->pause)) {
    		rcntl |= FEC_ENET_FCE;
    
    		/* set FIFO threshold parameter to reduce overrun */
    		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
    		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
    		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
    		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
    
    		/* OPD */
    		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
    	} else {
    		rcntl &= ~FEC_ENET_FCE;
    	}
    #endif /* !defined(CONFIG_M5272) */
    
    	writel(rcntl, fep->hwp + FEC_R_CNTRL);
    
    	/* Setup multicast filter. */
    	set_multicast_list(ndev);
    #ifndef CONFIG_M5272
    	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
    	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
    #endif
    
    	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
    		/* enable ENET endian swap */
    		ecntl |= (1 << 8);
    		/* enable ENET store and forward mode */
    		writel(1 << 8, fep->hwp + FEC_X_WMRK);
    	}
    
    	if (fep->bufdesc_ex)
    		ecntl |= (1 << 4);
    
    #ifndef CONFIG_M5272
    	/* Enable the MIB statistic event counters */
    	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
    #endif
    
    	/* And last, enable the transmit and receive processing */
    	writel(ecntl, fep->hwp + FEC_ECNTRL);
    	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
    
    	if (fep->bufdesc_ex)
    		fec_ptp_start_cyclecounter(ndev);
    
    	/* Enable interrupts we wish to service */
    	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
    
    	if (netif_running(ndev)) {
    		netif_tx_unlock_bh(ndev);
    		netif_wake_queue(ndev);
    		napi_enable(&fep->napi);
    		netif_device_attach(ndev);
    	}
    }
    
    static void
    fec_stop(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
    
    	/* We cannot expect a graceful transmit stop without link !!! */
    	if (fep->link) {
    		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
    		udelay(10);
    		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
    			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
    	}
    
    	/* Whack a reset.  We should wait for this. */
    	writel(1, fep->hwp + FEC_ECNTRL);
    	udelay(10);
    	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
    	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
    
    	/* We have to keep ENET enabled to have MII interrupt stay working */
    	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
    		writel(2, fep->hwp + FEC_ECNTRL);
    		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
    	}
    }
    
    
    static void
    fec_timeout(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	ndev->stats.tx_errors++;
    
    	fep->delay_work.timeout = true;
    	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
    }
    
    static void fec_enet_work(struct work_struct *work)
    {
    	struct fec_enet_private *fep =
    		container_of(work,
    			     struct fec_enet_private,
    			     delay_work.delay_work.work);
    
    	if (fep->delay_work.timeout) {
    		fep->delay_work.timeout = false;
    		fec_restart(fep->netdev, fep->full_duplex);
    		netif_wake_queue(fep->netdev);
    	}
    
    	if (fep->delay_work.trig_tx) {
    		fep->delay_work.trig_tx = false;
    		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
    	}
    }
    
    static void
    fec_enet_tx(struct net_device *ndev)
    {
    	struct	fec_enet_private *fep;
    	struct bufdesc *bdp;
    	unsigned short status;
    	struct	sk_buff	*skb;
    	int	index = 0;
    	int	entries_free;
    
    	fep = netdev_priv(ndev);
    	bdp = fep->dirty_tx;
    
    	/* get next bdp of dirty_tx */
    	bdp = fec_enet_get_nextdesc(bdp, fep);
    
    	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
    
    		/* current queue is empty */
    		if (bdp == fep->cur_tx)
    			break;
    
    		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
    
    		skb = fep->tx_skbuff[index];
    		if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
    			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
    					bdp->cbd_datlen, DMA_TO_DEVICE);
    		bdp->cbd_bufaddr = 0;
    		if (!skb) {
    			bdp = fec_enet_get_nextdesc(bdp, fep);
    			continue;
    		}
    
    		/* Check for errors. */
    		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
    				   BD_ENET_TX_RL | BD_ENET_TX_UN |
    				   BD_ENET_TX_CSL)) {
    			ndev->stats.tx_errors++;
    			if (status & BD_ENET_TX_HB)  /* No heartbeat */
    				ndev->stats.tx_heartbeat_errors++;
    			if (status & BD_ENET_TX_LC)  /* Late collision */
    				ndev->stats.tx_window_errors++;
    			if (status & BD_ENET_TX_RL)  /* Retrans limit */
    				ndev->stats.tx_aborted_errors++;
    			if (status & BD_ENET_TX_UN)  /* Underrun */
    				ndev->stats.tx_fifo_errors++;
    			if (status & BD_ENET_TX_CSL) /* Carrier lost */
    				ndev->stats.tx_carrier_errors++;
    		} else {
    			ndev->stats.tx_packets++;
    			ndev->stats.tx_bytes += skb->len;
    		}
    
    		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
    			fep->bufdesc_ex) {
    			struct skb_shared_hwtstamps shhwtstamps;
    			unsigned long flags;
    			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    
    			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
    			spin_lock_irqsave(&fep->tmreg_lock, flags);
    			shhwtstamps.hwtstamp = ns_to_ktime(
    				timecounter_cyc2time(&fep->tc, ebdp->ts));
    			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    			skb_tstamp_tx(skb, &shhwtstamps);
    		}
    
    		if (status & BD_ENET_TX_READY)
    			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
    
    		/* Deferred means some collisions occurred during transmit,
    		 * but we eventually sent the packet OK.
    		 */
    		if (status & BD_ENET_TX_DEF)
    			ndev->stats.collisions++;
    
    		/* Free the sk buffer associated with this last transmit */
    		dev_kfree_skb_any(skb);
    		fep->tx_skbuff[index] = NULL;
    
    		fep->dirty_tx = bdp;
    
    		/* Update pointer to next buffer descriptor to be transmitted */
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    
    		/* Since we have freed up a buffer, the ring is no longer full
    		 */
    		if (netif_queue_stopped(ndev)) {
    			entries_free = fec_enet_get_free_txdesc_num(fep);
    			if (entries_free >= fep->tx_wake_threshold)
    				netif_wake_queue(ndev);
    		}
    	}
    	return;
    }
    
    /* During a receive, the cur_rx points to the current incoming buffer.
     * When we update through the ring, if the next incoming buffer has
     * not been given to the system, we just set the empty indicator,
     * effectively tossing the packet.
     */
    static int
    fec_enet_rx(struct net_device *ndev, int budget)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	struct bufdesc *bdp;
    	unsigned short status;
    	struct	sk_buff	*skb;
    	ushort	pkt_len;
    	__u8 *data;
    	int	pkt_received = 0;
    	struct	bufdesc_ex *ebdp = NULL;
    	bool	vlan_packet_rcvd = false;
    	u16	vlan_tag;
    	int	index = 0;
    
    #ifdef CONFIG_M532x
    	flush_cache_all();
    #endif
    
    	/* First, grab all of the stats for the incoming packet.
    	 * These get messed up if we get called due to a busy condition.
    	 */
    	bdp = fep->cur_rx;
    
    	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
    
    		if (pkt_received >= budget)
    			break;
    		pkt_received++;
    
    		/* Since we have allocated space to hold a complete frame,
    		 * the last indicator should be set.
    		 */
    		if ((status & BD_ENET_RX_LAST) == 0)
    			netdev_err(ndev, "rcv is not +last\n");
    
    		if (!fep->opened)
    			goto rx_processing_done;
    
    		/* Check for errors. */
    		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
    			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
    			ndev->stats.rx_errors++;
    			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
    				/* Frame too long or too short. */
    				ndev->stats.rx_length_errors++;
    			}
    			if (status & BD_ENET_RX_NO)	/* Frame alignment */
    				ndev->stats.rx_frame_errors++;
    			if (status & BD_ENET_RX_CR)	/* CRC Error */
    				ndev->stats.rx_crc_errors++;
    			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
    				ndev->stats.rx_fifo_errors++;
    		}
    
    		/* Report late collisions as a frame error.
    		 * On this error, the BD is closed, but we don't know what we
    		 * have in the buffer.  So, just drop this frame on the floor.
    		 */
    		if (status & BD_ENET_RX_CL) {
    			ndev->stats.rx_errors++;
    			ndev->stats.rx_frame_errors++;
    			goto rx_processing_done;
    		}
    
    		/* Process the incoming frame. */
    		ndev->stats.rx_packets++;
    		pkt_len = bdp->cbd_datlen;
    		ndev->stats.rx_bytes += pkt_len;
    
    		index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
    		data = fep->rx_skbuff[index]->data;
    		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
    					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
    
    		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
    			swap_buffer(data, pkt_len);
    
    		/* Extract the enhanced buffer descriptor */
    		ebdp = NULL;
    		if (fep->bufdesc_ex)
    			ebdp = (struct bufdesc_ex *)bdp;
    
    		/* If this is a VLAN packet remove the VLAN Tag */
    		vlan_packet_rcvd = false;
    		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
    		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
    			/* Push and remove the vlan tag */
    			struct vlan_hdr *vlan_header =
    					(struct vlan_hdr *) (data + ETH_HLEN);
    			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
    			pkt_len -= VLAN_HLEN;
    
    			vlan_packet_rcvd = true;
    		}
    
    		/* This does 16 byte alignment, exactly what we need.
    		 * The packet length includes FCS, but we don't want to
    		 * include that when passing upstream as it messes up
    		 * bridging applications.
    		 */
    		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
    
    		if (unlikely(!skb)) {
    			ndev->stats.rx_dropped++;
    		} else {
    			int payload_offset = (2 * ETH_ALEN);
    			skb_reserve(skb, NET_IP_ALIGN);
    			skb_put(skb, pkt_len - 4);	/* Make room */
    
    			/* Extract the frame data without the VLAN header. */
    			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
    			if (vlan_packet_rcvd)
    				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
    			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
    						       data + payload_offset,
    						       pkt_len - 4 - (2 * ETH_ALEN));
    
    			skb->protocol = eth_type_trans(skb, ndev);
    
    			/* Get receive timestamp from the skb */
    			if (fep->hwts_rx_en && fep->bufdesc_ex) {
    				struct skb_shared_hwtstamps *shhwtstamps =
    							    skb_hwtstamps(skb);
    				unsigned long flags;
    
    				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
    
    				spin_lock_irqsave(&fep->tmreg_lock, flags);
    				shhwtstamps->hwtstamp = ns_to_ktime(
    				    timecounter_cyc2time(&fep->tc, ebdp->ts));
    				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    			}
    
    			if (fep->bufdesc_ex &&
    			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
    				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
    					/* don't check it */
    					skb->ip_summed = CHECKSUM_UNNECESSARY;
    				} else {
    					skb_checksum_none_assert(skb);
    				}
    			}
    
    			/* Handle received VLAN packets */
    			if (vlan_packet_rcvd)
    				__vlan_hwaccel_put_tag(skb,
    						       htons(ETH_P_8021Q),
    						       vlan_tag);
    
    			napi_gro_receive(&fep->napi, skb);
    		}
    
    		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
    					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
    rx_processing_done:
    		/* Clear the status flags for this buffer */
    		status &= ~BD_ENET_RX_STATS;
    
    		/* Mark the buffer empty */
    		status |= BD_ENET_RX_EMPTY;
    		bdp->cbd_sc = status;
    
    		if (fep->bufdesc_ex) {
    			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    
    			ebdp->cbd_esc = BD_ENET_RX_INT;
    			ebdp->cbd_prot = 0;
    			ebdp->cbd_bdu = 0;
    		}
    
    		/* Update BD pointer to next entry */
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    
    		/* Doing this here will keep the FEC running while we process
    		 * incoming frames.  On a heavily loaded network, we should be
    		 * able to keep up at the expense of system resources.
    		 */
    		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
    	}
    	fep->cur_rx = bdp;
    
    	return pkt_received;
    }
    
    static irqreturn_t
    fec_enet_interrupt(int irq, void *dev_id)
    {
    	struct net_device *ndev = dev_id;
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	uint int_events;
    	irqreturn_t ret = IRQ_NONE;
    
    	do {
    		int_events = readl(fep->hwp + FEC_IEVENT);
    		writel(int_events, fep->hwp + FEC_IEVENT);
    
    		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
    			ret = IRQ_HANDLED;
    
    			/* Disable the RX interrupt */
    			if (napi_schedule_prep(&fep->napi)) {
    				writel(FEC_RX_DISABLED_IMASK,
    					fep->hwp + FEC_IMASK);
    				__napi_schedule(&fep->napi);
    			}
    		}
    
    		if (int_events & FEC_ENET_MII) {
    			ret = IRQ_HANDLED;
    			complete(&fep->mdio_done);
    		}
    	} while (int_events);
    
    	return ret;
    }
    
    static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
    {
    	struct net_device *ndev = napi->dev;
    	int pkts = fec_enet_rx(ndev, budget);
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	fec_enet_tx(ndev);
    
    	if (pkts < budget) {
    		napi_complete(napi);
    		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
    	}
    	return pkts;
    }
    
    /* ------------------------------------------------------------------------- */
    static void fec_get_mac(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
    	unsigned char *iap, tmpaddr[ETH_ALEN];
    
    	/*
    	 * try to get mac address in following order:
    	 *
    	 * 1) module parameter via kernel command line in form
    	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
    	 */
    	iap = macaddr;
    
    	/*
    	 * 2) from device tree data
    	 */
    	if (!is_valid_ether_addr(iap)) {
    		struct device_node *np = fep->pdev->dev.of_node;
    		if (np) {
    			const char *mac = of_get_mac_address(np);
    			if (mac)
    				iap = (unsigned char *) mac;
    		}
    	}
    
    	/*
    	 * 3) from flash or fuse (via platform data)
    	 */
    	if (!is_valid_ether_addr(iap)) {
    #ifdef CONFIG_M5272
    		if (FEC_FLASHMAC)
    			iap = (unsigned char *)FEC_FLASHMAC;
    #else
    		if (pdata)
    			iap = (unsigned char *)&pdata->mac;
    #endif
    	}
    
    	/*
    	 * 4) FEC mac registers set by bootloader
    	 */
    	if (!is_valid_ether_addr(iap)) {
    		*((__be32 *) &tmpaddr[0]) =
    			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
    		*((__be16 *) &tmpaddr[4]) =
    			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
    		iap = &tmpaddr[0];
    	}
    
    	/*
    	 * 5) random mac address
    	 */
    	if (!is_valid_ether_addr(iap)) {
    		/* Report it and use a random ethernet address instead */
    		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
    		eth_hw_addr_random(ndev);
    		netdev_info(ndev, "Using random MAC address: %pM\n",
    			    ndev->dev_addr);
    		return;
    	}
    
    	memcpy(ndev->dev_addr, iap, ETH_ALEN);
    
    	/* Adjust MAC if using macaddr */
    	if (iap == macaddr)
    		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
    }
    
    /* ------------------------------------------------------------------------- */
    
    /*
     * Phy section
     */
    static void fec_enet_adjust_link(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct phy_device *phy_dev = fep->phy_dev;
    	int status_change = 0;
    
    	/* Prevent a state halted on mii error */
    	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
    		phy_dev->state = PHY_RESUMING;
    		return;
    	}
    
    	if (phy_dev->link) {
    		if (!fep->link) {
    			fep->link = phy_dev->link;
    			status_change = 1;
    		}
    
    		if (fep->full_duplex != phy_dev->duplex)
    			status_change = 1;
    
    		if (phy_dev->speed != fep->speed) {
    			fep->speed = phy_dev->speed;
    			status_change = 1;
    		}
    
    		/* if any of the above changed restart the FEC */
    		if (status_change)
    			fec_restart(ndev, phy_dev->duplex);
    	} else {
    		if (fep->link) {
    			fec_stop(ndev);
    			fep->link = phy_dev->link;
    			status_change = 1;
    		}
    	}
    
    	if (status_change)
    		phy_print_status(phy_dev);
    }
    
    static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
    {
    	struct fec_enet_private *fep = bus->priv;
    	unsigned long time_left;
    
    	fep->mii_timeout = 0;
    	init_completion(&fep->mdio_done);
    
    	/* start a read op */
    	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
    		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
    		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
    
    	/* wait for end of transfer */
    	time_left = wait_for_completion_timeout(&fep->mdio_done,
    			usecs_to_jiffies(FEC_MII_TIMEOUT));
    	if (time_left == 0) {
    		fep->mii_timeout = 1;
    		netdev_err(fep->netdev, "MDIO read timeout\n");
    		return -ETIMEDOUT;
    	}
    
    	/* return value */
    	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
    }
    
    static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
    			   u16 value)
    {
    	struct fec_enet_private *fep = bus->priv;
    	unsigned long time_left;
    
    	fep->mii_timeout = 0;
    	init_completion(&fep->mdio_done);
    
    	/* start a write op */
    	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
    		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
    		FEC_MMFR_TA | FEC_MMFR_DATA(value),
    		fep->hwp + FEC_MII_DATA);
    
    	/* wait for end of transfer */
    	time_left = wait_for_completion_timeout(&fep->mdio_done,
    			usecs_to_jiffies(FEC_MII_TIMEOUT));
    	if (time_left == 0) {
    		fep->mii_timeout = 1;
    		netdev_err(fep->netdev, "MDIO write timeout\n");
    		return -ETIMEDOUT;
    	}
    
    	return 0;
    }
    
    static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	int ret;
    
    	if (enable) {
    		ret = clk_prepare_enable(fep->clk_ahb);
    		if (ret)
    			return ret;
    		ret = clk_prepare_enable(fep->clk_ipg);
    		if (ret)
    			goto failed_clk_ipg;
    		if (fep->clk_enet_out) {
    			ret = clk_prepare_enable(fep->clk_enet_out);
    			if (ret)
    				goto failed_clk_enet_out;
    		}
    		if (fep->clk_ptp) {
    			ret = clk_prepare_enable(fep->clk_ptp);
    			if (ret)
    				goto failed_clk_ptp;
    		}
    	} else {
    		clk_disable_unprepare(fep->clk_ahb);
    		clk_disable_unprepare(fep->clk_ipg);
    		if (fep->clk_enet_out)
    			clk_disable_unprepare(fep->clk_enet_out);
    		if (fep->clk_ptp)
    			clk_disable_unprepare(fep->clk_ptp);
    	}
    
    	return 0;
    failed_clk_ptp:
    	if (fep->clk_enet_out)
    		clk_disable_unprepare(fep->clk_enet_out);
    failed_clk_enet_out:
    		clk_disable_unprepare(fep->clk_ipg);
    failed_clk_ipg:
    		clk_disable_unprepare(fep->clk_ahb);
    
    	return ret;
    }
    
    static int fec_enet_mii_probe(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	struct phy_device *phy_dev = NULL;
    	char mdio_bus_id[MII_BUS_ID_SIZE];
    	char phy_name[MII_BUS_ID_SIZE + 3];
    	int phy_id;
    	int dev_id = fep->dev_id;
    
    	fep->phy_dev = NULL;
    
    	/* check for attached phy */
    	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
    		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
    			continue;
    		if (fep->mii_bus->phy_map[phy_id] == NULL)
    			continue;
    		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
    			continue;
    		if (dev_id--)
    			continue;
    		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
    		break;
    	}
    
    	if (phy_id >= PHY_MAX_ADDR) {
    		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
    		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
    		phy_id = 0;
    	}
    
    	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
    	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
    			      fep->phy_interface);
    	if (IS_ERR(phy_dev)) {
    		netdev_err(ndev, "could not attach to PHY\n");
    		return PTR_ERR(phy_dev);
    	}
    
    	/* mask with MAC supported features */
    	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
    		phy_dev->supported &= PHY_GBIT_FEATURES;
    #if !defined(CONFIG_M5272)
    		phy_dev->supported |= SUPPORTED_Pause;
    #endif
    	}
    	else
    		phy_dev->supported &= PHY_BASIC_FEATURES;
    
    	phy_dev->advertising = phy_dev->supported;
    
    	fep->phy_dev = phy_dev;
    	fep->link = 0;
    	fep->full_duplex = 0;
    
    	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
    		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
    		    fep->phy_dev->irq);
    
    	return 0;
    }
    
    static int fec_enet_mii_init(struct platform_device *pdev)
    {
    	static struct mii_bus *fec0_mii_bus;
    	struct net_device *ndev = platform_get_drvdata(pdev);
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	int err = -ENXIO, i;
    
    	/*
    	 * The dual fec interfaces are not equivalent with enet-mac.
    	 * Here are the differences:
    	 *
    	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
    	 *  - fec0 acts as the 1588 time master while fec1 is slave
    	 *  - external phys can only be configured by fec0
    	 *
    	 * That is to say fec1 can not work independently. It only works
    	 * when fec0 is working. The reason behind this design is that the
    	 * second interface is added primarily for Switch mode.
    	 *
    	 * Because of the last point above, both phys are attached on fec0
    	 * mdio interface in board design, and need to be configured by
    	 * fec0 mii_bus.
    	 */
    	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
    		/* fec1 uses fec0 mii_bus */
    		if (mii_cnt && fec0_mii_bus) {
    			fep->mii_bus = fec0_mii_bus;
    			mii_cnt++;
    			return 0;
    		}
    		return -ENOENT;
    	}
    
    	fep->mii_timeout = 0;
    
    	/*
    	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
    	 *
    	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
    	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
    	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
    	 * document.
    	 */
    	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
    	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
    		fep->phy_speed--;
    	fep->phy_speed <<= 1;
    	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
    
    	fep->mii_bus = mdiobus_alloc();
    	if (fep->mii_bus == NULL) {
    		err = -ENOMEM;
    		goto err_out;
    	}
    
    	fep->mii_bus->name = "fec_enet_mii_bus";
    	fep->mii_bus->read = fec_enet_mdio_read;
    	fep->mii_bus->write = fec_enet_mdio_write;
    	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
    		pdev->name, fep->dev_id + 1);
    	fep->mii_bus->priv = fep;
    	fep->mii_bus->parent = &pdev->dev;
    
    	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
    	if (!fep->mii_bus->irq) {
    		err = -ENOMEM;
    		goto err_out_free_mdiobus;
    	}
    
    	for (i = 0; i < PHY_MAX_ADDR; i++)
    		fep->mii_bus->irq[i] = PHY_POLL;
    
    	if (mdiobus_register(fep->mii_bus))
    		goto err_out_free_mdio_irq;
    
    	mii_cnt++;
    
    	/* save fec0 mii_bus */
    	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
    		fec0_mii_bus = fep->mii_bus;
    
    	return 0;
    
    err_out_free_mdio_irq:
    	kfree(fep->mii_bus->irq);
    err_out_free_mdiobus:
    	mdiobus_free(fep->mii_bus);
    err_out:
    	return err;
    }
    
    static void fec_enet_mii_remove(struct fec_enet_private *fep)
    {
    	if (--mii_cnt == 0) {
    		mdiobus_unregister(fep->mii_bus);
    		kfree(fep->mii_bus->irq);
    		mdiobus_free(fep->mii_bus);
    	}
    }
    
    static int fec_enet_get_settings(struct net_device *ndev,
    				  struct ethtool_cmd *cmd)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct phy_device *phydev = fep->phy_dev;
    
    	if (!phydev)
    		return -ENODEV;
    
    	return phy_ethtool_gset(phydev, cmd);
    }
    
    static int fec_enet_set_settings(struct net_device *ndev,
    				 struct ethtool_cmd *cmd)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct phy_device *phydev = fep->phy_dev;
    
    	if (!phydev)
    		return -ENODEV;
    
    	return phy_ethtool_sset(phydev, cmd);
    }
    
    static void fec_enet_get_drvinfo(struct net_device *ndev,
    				 struct ethtool_drvinfo *info)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	strlcpy(info->driver, fep->pdev->dev.driver->name,
    		sizeof(info->driver));
    	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
    	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
    }
    
    static int fec_enet_get_ts_info(struct net_device *ndev,
    				struct ethtool_ts_info *info)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	if (fep->bufdesc_ex) {
    
    		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
    					SOF_TIMESTAMPING_RX_SOFTWARE |
    					SOF_TIMESTAMPING_SOFTWARE |
    					SOF_TIMESTAMPING_TX_HARDWARE |
    					SOF_TIMESTAMPING_RX_HARDWARE |
    					SOF_TIMESTAMPING_RAW_HARDWARE;
    		if (fep->ptp_clock)
    			info->phc_index = ptp_clock_index(fep->ptp_clock);
    		else
    			info->phc_index = -1;
    
    		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
    				 (1 << HWTSTAMP_TX_ON);
    
    		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
    				   (1 << HWTSTAMP_FILTER_ALL);
    		return 0;
    	} else {
    		return ethtool_op_get_ts_info(ndev, info);
    	}
    }
    
    #if !defined(CONFIG_M5272)
    
    static void fec_enet_get_pauseparam(struct net_device *ndev,
    				    struct ethtool_pauseparam *pause)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
    	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
    	pause->rx_pause = pause->tx_pause;
    }
    
    static int fec_enet_set_pauseparam(struct net_device *ndev,
    				   struct ethtool_pauseparam *pause)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	if (pause->tx_pause != pause->rx_pause) {
    		netdev_info(ndev,
    			"hardware only support enable/disable both tx and rx");
    		return -EINVAL;
    	}
    
    	fep->pause_flag = 0;
    
    	/* tx pause must be same as rx pause */
    	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
    	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
    
    	if (pause->rx_pause || pause->autoneg) {
    		fep->phy_dev->supported |= ADVERTISED_Pause;
    		fep->phy_dev->advertising |= ADVERTISED_Pause;
    	} else {
    		fep->phy_dev->supported &= ~ADVERTISED_Pause;
    		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
    	}
    
    	if (pause->autoneg) {
    		if (netif_running(ndev))
    			fec_stop(ndev);
    		phy_start_aneg(fep->phy_dev);
    	}
    	if (netif_running(ndev))
    		fec_restart(ndev, 0);
    
    	return 0;
    }
    
    static const struct fec_stat {
    	char name[ETH_GSTRING_LEN];
    	u16 offset;
    } fec_stats[] = {
    	/* RMON TX */
    	{ "tx_dropped", RMON_T_DROP },
    	{ "tx_packets", RMON_T_PACKETS },
    	{ "tx_broadcast", RMON_T_BC_PKT },
    	{ "tx_multicast", RMON_T_MC_PKT },
    	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
    	{ "tx_undersize", RMON_T_UNDERSIZE },
    	{ "tx_oversize", RMON_T_OVERSIZE },
    	{ "tx_fragment", RMON_T_FRAG },
    	{ "tx_jabber", RMON_T_JAB },
    	{ "tx_collision", RMON_T_COL },
    	{ "tx_64byte", RMON_T_P64 },
    	{ "tx_65to127byte", RMON_T_P65TO127 },
    	{ "tx_128to255byte", RMON_T_P128TO255 },
    	{ "tx_256to511byte", RMON_T_P256TO511 },
    	{ "tx_512to1023byte", RMON_T_P512TO1023 },
    	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
    	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
    	{ "tx_octets", RMON_T_OCTETS },
    
    	/* IEEE TX */
    	{ "IEEE_tx_drop", IEEE_T_DROP },
    	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
    	{ "IEEE_tx_1col", IEEE_T_1COL },
    	{ "IEEE_tx_mcol", IEEE_T_MCOL },
    	{ "IEEE_tx_def", IEEE_T_DEF },
    	{ "IEEE_tx_lcol", IEEE_T_LCOL },
    	{ "IEEE_tx_excol", IEEE_T_EXCOL },
    	{ "IEEE_tx_macerr", IEEE_T_MACERR },
    	{ "IEEE_tx_cserr", IEEE_T_CSERR },
    	{ "IEEE_tx_sqe", IEEE_T_SQE },
    	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
    	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
    
    	/* RMON RX */
    	{ "rx_packets", RMON_R_PACKETS },
    	{ "rx_broadcast", RMON_R_BC_PKT },
    	{ "rx_multicast", RMON_R_MC_PKT },
    	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
    	{ "rx_undersize", RMON_R_UNDERSIZE },
    	{ "rx_oversize", RMON_R_OVERSIZE },
    	{ "rx_fragment", RMON_R_FRAG },
    	{ "rx_jabber", RMON_R_JAB },
    	{ "rx_64byte", RMON_R_P64 },
    	{ "rx_65to127byte", RMON_R_P65TO127 },
    	{ "rx_128to255byte", RMON_R_P128TO255 },
    	{ "rx_256to511byte", RMON_R_P256TO511 },
    	{ "rx_512to1023byte", RMON_R_P512TO1023 },
    	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
    	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
    	{ "rx_octets", RMON_R_OCTETS },
    
    	/* IEEE RX */
    	{ "IEEE_rx_drop", IEEE_R_DROP },
    	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
    	{ "IEEE_rx_crc", IEEE_R_CRC },
    	{ "IEEE_rx_align", IEEE_R_ALIGN },
    	{ "IEEE_rx_macerr", IEEE_R_MACERR },
    	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
    	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
    };
    
    static void fec_enet_get_ethtool_stats(struct net_device *dev,
    	struct ethtool_stats *stats, u64 *data)
    {
    	struct fec_enet_private *fep = netdev_priv(dev);
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
    		data[i] = readl(fep->hwp + fec_stats[i].offset);
    }
    
    static void fec_enet_get_strings(struct net_device *netdev,
    	u32 stringset, u8 *data)
    {
    	int i;
    	switch (stringset) {
    	case ETH_SS_STATS:
    		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
    			memcpy(data + i * ETH_GSTRING_LEN,
    				fec_stats[i].name, ETH_GSTRING_LEN);
    		break;
    	}
    }
    
    static int fec_enet_get_sset_count(struct net_device *dev, int sset)
    {
    	switch (sset) {
    	case ETH_SS_STATS:
    		return ARRAY_SIZE(fec_stats);
    	default:
    		return -EOPNOTSUPP;
    	}
    }
    #endif /* !defined(CONFIG_M5272) */
    
    static int fec_enet_nway_reset(struct net_device *dev)
    {
    	struct fec_enet_private *fep = netdev_priv(dev);
    	struct phy_device *phydev = fep->phy_dev;
    
    	if (!phydev)
    		return -ENODEV;
    
    	return genphy_restart_aneg(phydev);
    }
    
    static const struct ethtool_ops fec_enet_ethtool_ops = {
    #if !defined(CONFIG_M5272)
    	.get_pauseparam		= fec_enet_get_pauseparam,
    	.set_pauseparam		= fec_enet_set_pauseparam,
    #endif
    	.get_settings		= fec_enet_get_settings,
    	.set_settings		= fec_enet_set_settings,
    	.get_drvinfo		= fec_enet_get_drvinfo,
    	.get_link		= ethtool_op_get_link,
    	.get_ts_info		= fec_enet_get_ts_info,
    	.nway_reset		= fec_enet_nway_reset,
    #ifndef CONFIG_M5272
    	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
    	.get_strings		= fec_enet_get_strings,
    	.get_sset_count		= fec_enet_get_sset_count,
    #endif
    };
    
    static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct phy_device *phydev = fep->phy_dev;
    
    	if (!netif_running(ndev))
    		return -EINVAL;
    
    	if (!phydev)
    		return -ENODEV;
    
    	if (fep->bufdesc_ex) {
    		if (cmd == SIOCSHWTSTAMP)
    			return fec_ptp_set(ndev, rq);
    		if (cmd == SIOCGHWTSTAMP)
    			return fec_ptp_get(ndev, rq);
    	}
    
    	return phy_mii_ioctl(phydev, rq, cmd);
    }
    
    static void fec_enet_free_buffers(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	unsigned int i;
    	struct sk_buff *skb;
    	struct bufdesc	*bdp;
    
    	bdp = fep->rx_bd_base;
    	for (i = 0; i < fep->rx_ring_size; i++) {
    		skb = fep->rx_skbuff[i];
    
    		if (bdp->cbd_bufaddr)
    			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
    					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
    		if (skb)
    			dev_kfree_skb(skb);
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    	}
    
    	bdp = fep->tx_bd_base;
    	for (i = 0; i < fep->tx_ring_size; i++)
    		kfree(fep->tx_bounce[i]);
    }
    
    static int fec_enet_alloc_buffers(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	unsigned int i;
    	struct sk_buff *skb;
    	struct bufdesc	*bdp;
    
    	bdp = fep->rx_bd_base;
    	for (i = 0; i < fep->rx_ring_size; i++) {
    		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
    		if (!skb) {
    			fec_enet_free_buffers(ndev);
    			return -ENOMEM;
    		}
    		fep->rx_skbuff[i] = skb;
    
    		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
    				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
    		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
    			fec_enet_free_buffers(ndev);
    			if (net_ratelimit())
    				netdev_err(ndev, "Rx DMA memory map failed\n");
    			return -ENOMEM;
    		}
    		bdp->cbd_sc = BD_ENET_RX_EMPTY;
    
    		if (fep->bufdesc_ex) {
    			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    			ebdp->cbd_esc = BD_ENET_RX_INT;
    		}
    
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    	}
    
    	/* Set the last buffer to wrap. */
    	bdp = fec_enet_get_prevdesc(bdp, fep);
    	bdp->cbd_sc |= BD_SC_WRAP;
    
    	bdp = fep->tx_bd_base;
    	for (i = 0; i < fep->tx_ring_size; i++) {
    		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
    
    		bdp->cbd_sc = 0;
    		bdp->cbd_bufaddr = 0;
    
    		if (fep->bufdesc_ex) {
    			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
    			ebdp->cbd_esc = BD_ENET_TX_INT;
    		}
    
    		bdp = fec_enet_get_nextdesc(bdp, fep);
    	}
    
    	/* Set the last buffer to wrap. */
    	bdp = fec_enet_get_prevdesc(bdp, fep);
    	bdp->cbd_sc |= BD_SC_WRAP;
    
    	return 0;
    }
    
    static int
    fec_enet_open(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	int ret;
    
    	pinctrl_pm_select_default_state(&fep->pdev->dev);
    	ret = fec_enet_clk_enable(ndev, true);
    	if (ret)
    		return ret;
    
    	/* I should reset the ring buffers here, but I don't yet know
    	 * a simple way to do that.
    	 */
    
    	ret = fec_enet_alloc_buffers(ndev);
    	if (ret)
    		return ret;
    
    	/* Probe and connect to PHY when open the interface */
    	ret = fec_enet_mii_probe(ndev);
    	if (ret) {
    		fec_enet_free_buffers(ndev);
    		return ret;
    	}
    
    	napi_enable(&fep->napi);
    	phy_start(fep->phy_dev);
    	netif_start_queue(ndev);
    	fep->opened = 1;
    	return 0;
    }
    
    static int
    fec_enet_close(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	/* Don't know what to do yet. */
    	napi_disable(&fep->napi);
    	fep->opened = 0;
    	netif_stop_queue(ndev);
    	fec_stop(ndev);
    
    	if (fep->phy_dev) {
    		phy_stop(fep->phy_dev);
    		phy_disconnect(fep->phy_dev);
    	}
    
    	fec_enet_clk_enable(ndev, false);
    	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
    	fec_enet_free_buffers(ndev);
    
    	return 0;
    }
    
    /* Set or clear the multicast filter for this adaptor.
     * Skeleton taken from sunlance driver.
     * The CPM Ethernet implementation allows Multicast as well as individual
     * MAC address filtering.  Some of the drivers check to make sure it is
     * a group multicast address, and discard those that are not.  I guess I
     * will do the same for now, but just remove the test if you want
     * individual filtering as well (do the upper net layers want or support
     * this kind of feature?).
     */
    
    #define HASH_BITS	6		/* #bits in hash */
    #define CRC32_POLY	0xEDB88320
    
    static void set_multicast_list(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct netdev_hw_addr *ha;
    	unsigned int i, bit, data, crc, tmp;
    	unsigned char hash;
    
    	if (ndev->flags & IFF_PROMISC) {
    		tmp = readl(fep->hwp + FEC_R_CNTRL);
    		tmp |= 0x8;
    		writel(tmp, fep->hwp + FEC_R_CNTRL);
    		return;
    	}
    
    	tmp = readl(fep->hwp + FEC_R_CNTRL);
    	tmp &= ~0x8;
    	writel(tmp, fep->hwp + FEC_R_CNTRL);
    
    	if (ndev->flags & IFF_ALLMULTI) {
    		/* Catch all multicast addresses, so set the
    		 * filter to all 1's
    		 */
    		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
    		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
    
    		return;
    	}
    
    	/* Clear filter and add the addresses in hash register
    	 */
    	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
    	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
    
    	netdev_for_each_mc_addr(ha, ndev) {
    		/* calculate crc32 value of mac address */
    		crc = 0xffffffff;
    
    		for (i = 0; i < ndev->addr_len; i++) {
    			data = ha->addr[i];
    			for (bit = 0; bit < 8; bit++, data >>= 1) {
    				crc = (crc >> 1) ^
    				(((crc ^ data) & 1) ? CRC32_POLY : 0);
    			}
    		}
    
    		/* only upper 6 bits (HASH_BITS) are used
    		 * which point to specific bit in he hash registers
    		 */
    		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
    
    		if (hash > 31) {
    			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
    			tmp |= 1 << (hash - 32);
    			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
    		} else {
    			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
    			tmp |= 1 << hash;
    			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
    		}
    	}
    }
    
    /* Set a MAC change in hardware. */
    static int
    fec_set_mac_address(struct net_device *ndev, void *p)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	struct sockaddr *addr = p;
    
    	if (addr) {
    		if (!is_valid_ether_addr(addr->sa_data))
    			return -EADDRNOTAVAIL;
    		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
    	}
    
    	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
    		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
    		fep->hwp + FEC_ADDR_LOW);
    	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
    		fep->hwp + FEC_ADDR_HIGH);
    	return 0;
    }
    
    #ifdef CONFIG_NET_POLL_CONTROLLER
    /**
     * fec_poll_controller - FEC Poll controller function
     * @dev: The FEC network adapter
     *
     * Polled functionality used by netconsole and others in non interrupt mode
     *
     */
    static void fec_poll_controller(struct net_device *dev)
    {
    	int i;
    	struct fec_enet_private *fep = netdev_priv(dev);
    
    	for (i = 0; i < FEC_IRQ_NUM; i++) {
    		if (fep->irq[i] > 0) {
    			disable_irq(fep->irq[i]);
    			fec_enet_interrupt(fep->irq[i], dev);
    			enable_irq(fep->irq[i]);
    		}
    	}
    }
    #endif
    
    static int fec_set_features(struct net_device *netdev,
    	netdev_features_t features)
    {
    	struct fec_enet_private *fep = netdev_priv(netdev);
    	netdev_features_t changed = features ^ netdev->features;
    
    	netdev->features = features;
    
    	/* Receive checksum has been changed */
    	if (changed & NETIF_F_RXCSUM) {
    		if (features & NETIF_F_RXCSUM)
    			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
    		else
    			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
    
    		if (netif_running(netdev)) {
    			fec_stop(netdev);
    			fec_restart(netdev, fep->phy_dev->duplex);
    			netif_wake_queue(netdev);
    		} else {
    			fec_restart(netdev, fep->phy_dev->duplex);
    		}
    	}
    
    	return 0;
    }
    
    static const struct net_device_ops fec_netdev_ops = {
    	.ndo_open		= fec_enet_open,
    	.ndo_stop		= fec_enet_close,
    	.ndo_start_xmit		= fec_enet_start_xmit,
    	.ndo_set_rx_mode	= set_multicast_list,
    	.ndo_change_mtu		= eth_change_mtu,
    	.ndo_validate_addr	= eth_validate_addr,
    	.ndo_tx_timeout		= fec_timeout,
    	.ndo_set_mac_address	= fec_set_mac_address,
    	.ndo_do_ioctl		= fec_enet_ioctl,
    #ifdef CONFIG_NET_POLL_CONTROLLER
    	.ndo_poll_controller	= fec_poll_controller,
    #endif
    	.ndo_set_features	= fec_set_features,
    };
    
     /*
      * XXX:  We need to clean up on failure exits here.
      *
      */
    static int fec_enet_init(struct net_device *ndev)
    {
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	const struct platform_device_id *id_entry =
    				platform_get_device_id(fep->pdev);
    	struct bufdesc *cbd_base;
    	int bd_size;
    
    	/* init the tx & rx ring size */
    	fep->tx_ring_size = TX_RING_SIZE;
    	fep->rx_ring_size = RX_RING_SIZE;
    
    	fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
    	fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
    
    	if (fep->bufdesc_ex)
    		fep->bufdesc_size = sizeof(struct bufdesc_ex);
    	else
    		fep->bufdesc_size = sizeof(struct bufdesc);
    	bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
    			fep->bufdesc_size;
    
    	/* Allocate memory for buffer descriptors. */
    	cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
    				      GFP_KERNEL);
    	if (!cbd_base)
    		return -ENOMEM;
    
    	fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
    						&fep->tso_hdrs_dma, GFP_KERNEL);
    	if (!fep->tso_hdrs) {
    		dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
    		return -ENOMEM;
    	}
    
    	memset(cbd_base, 0, PAGE_SIZE);
    
    	fep->netdev = ndev;
    
    	/* Get the Ethernet address */
    	fec_get_mac(ndev);
    	/* make sure MAC we just acquired is programmed into the hw */
    	fec_set_mac_address(ndev, NULL);
    
    	/* Set receive and transmit descriptor base. */
    	fep->rx_bd_base = cbd_base;
    	if (fep->bufdesc_ex)
    		fep->tx_bd_base = (struct bufdesc *)
    			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
    	else
    		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
    
    	/* The FEC Ethernet specific entries in the device structure */
    	ndev->watchdog_timeo = TX_TIMEOUT;
    	ndev->netdev_ops = &fec_netdev_ops;
    	ndev->ethtool_ops = &fec_enet_ethtool_ops;
    
    	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
    	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
    
    	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
    		/* enable hw VLAN support */
    		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
    
    	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
    		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
    
    		/* enable hw accelerator */
    		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
    				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
    		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
    	}
    
    	ndev->hw_features = ndev->features;
    
    	fec_restart(ndev, 0);
    
    	return 0;
    }
    
    #ifdef CONFIG_OF
    static void fec_reset_phy(struct platform_device *pdev)
    {
    	int err, phy_reset;
    	int msec = 1;
    	struct device_node *np = pdev->dev.of_node;
    
    	if (!np)
    		return;
    
    	of_property_read_u32(np, "phy-reset-duration", &msec);
    	/* A sane reset duration should not be longer than 1s */
    	if (msec > 1000)
    		msec = 1;
    
    	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
    	if (!gpio_is_valid(phy_reset))
    		return;
    
    	err = devm_gpio_request_one(&pdev->dev, phy_reset,
    				    GPIOF_OUT_INIT_LOW, "phy-reset");
    	if (err) {
    		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
    		return;
    	}
    	msleep(msec);
    	gpio_set_value(phy_reset, 1);
    }
    #else /* CONFIG_OF */
    static void fec_reset_phy(struct platform_device *pdev)
    {
    	/*
    	 * In case of platform probe, the reset has been done
    	 * by machine code.
    	 */
    }
    #endif /* CONFIG_OF */
    
    static int
    fec_probe(struct platform_device *pdev)
    {
    	struct fec_enet_private *fep;
    	struct fec_platform_data *pdata;
    	struct net_device *ndev;
    	int i, irq, ret = 0;
    	struct resource *r;
    	const struct of_device_id *of_id;
    	static int dev_id;
    
    	of_id = of_match_device(fec_dt_ids, &pdev->dev);
    	if (of_id)
    		pdev->id_entry = of_id->data;
    
    	/* Init network device */
    	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
    	if (!ndev)
    		return -ENOMEM;
    
    	SET_NETDEV_DEV(ndev, &pdev->dev);
    
    	/* setup board info structure */
    	fep = netdev_priv(ndev);
    
    #if !defined(CONFIG_M5272)
    	/* default enable pause frame auto negotiation */
    	if (pdev->id_entry &&
    	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
    		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
    #endif
    
    	/* Select default pin state */
    	pinctrl_pm_select_default_state(&pdev->dev);
    
    	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
    	if (IS_ERR(fep->hwp)) {
    		ret = PTR_ERR(fep->hwp);
    		goto failed_ioremap;
    	}
    
    	fep->pdev = pdev;
    	fep->dev_id = dev_id++;
    
    	fep->bufdesc_ex = 0;
    
    	platform_set_drvdata(pdev, ndev);
    
    	ret = of_get_phy_mode(pdev->dev.of_node);
    	if (ret < 0) {
    		pdata = dev_get_platdata(&pdev->dev);
    		if (pdata)
    			fep->phy_interface = pdata->phy;
    		else
    			fep->phy_interface = PHY_INTERFACE_MODE_MII;
    	} else {
    		fep->phy_interface = ret;
    	}
    
    	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
    	if (IS_ERR(fep->clk_ipg)) {
    		ret = PTR_ERR(fep->clk_ipg);
    		goto failed_clk;
    	}
    
    	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
    	if (IS_ERR(fep->clk_ahb)) {
    		ret = PTR_ERR(fep->clk_ahb);
    		goto failed_clk;
    	}
    
    	/* enet_out is optional, depends on board */
    	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
    	if (IS_ERR(fep->clk_enet_out))
    		fep->clk_enet_out = NULL;
    
    	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
    	fep->bufdesc_ex =
    		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
    	if (IS_ERR(fep->clk_ptp)) {
    		fep->clk_ptp = NULL;
    		fep->bufdesc_ex = 0;
    	}
    
    	ret = fec_enet_clk_enable(ndev, true);
    	if (ret)
    		goto failed_clk;
    
    	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
    	if (!IS_ERR(fep->reg_phy)) {
    		ret = regulator_enable(fep->reg_phy);
    		if (ret) {
    			dev_err(&pdev->dev,
    				"Failed to enable phy regulator: %d\n", ret);
    			goto failed_regulator;
    		}
    	} else {
    		fep->reg_phy = NULL;
    	}
    
    	fec_reset_phy(pdev);
    
    	if (fep->bufdesc_ex)
    		fec_ptp_init(pdev);
    
    	ret = fec_enet_init(ndev);
    	if (ret)
    		goto failed_init;
    
    	for (i = 0; i < FEC_IRQ_NUM; i++) {
    		irq = platform_get_irq(pdev, i);
    		if (irq < 0) {
    			if (i)
    				break;
    			ret = irq;
    			goto failed_irq;
    		}
    		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
    				       0, pdev->name, ndev);
    		if (ret)
    			goto failed_irq;
    	}
    
    	ret = fec_enet_mii_init(pdev);
    	if (ret)
    		goto failed_mii_init;
    
    	/* Carrier starts down, phylib will bring it up */
    	netif_carrier_off(ndev);
    	fec_enet_clk_enable(ndev, false);
    	pinctrl_pm_select_sleep_state(&pdev->dev);
    
    	ret = register_netdev(ndev);
    	if (ret)
    		goto failed_register;
    
    	if (fep->bufdesc_ex && fep->ptp_clock)
    		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
    
    	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
    	return 0;
    
    failed_register:
    	fec_enet_mii_remove(fep);
    failed_mii_init:
    failed_irq:
    failed_init:
    	if (fep->reg_phy)
    		regulator_disable(fep->reg_phy);
    failed_regulator:
    	fec_enet_clk_enable(ndev, false);
    failed_clk:
    failed_ioremap:
    	free_netdev(ndev);
    
    	return ret;
    }
    
    static int
    fec_drv_remove(struct platform_device *pdev)
    {
    	struct net_device *ndev = platform_get_drvdata(pdev);
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
    	unregister_netdev(ndev);
    	fec_enet_mii_remove(fep);
    	del_timer_sync(&fep->time_keep);
    	if (fep->reg_phy)
    		regulator_disable(fep->reg_phy);
    	if (fep->ptp_clock)
    		ptp_clock_unregister(fep->ptp_clock);
    	fec_enet_clk_enable(ndev, false);
    	free_netdev(ndev);
    
    	return 0;
    }
    
    #ifdef CONFIG_PM_SLEEP
    static int
    fec_suspend(struct device *dev)
    {
    	struct net_device *ndev = dev_get_drvdata(dev);
    	struct fec_enet_private *fep = netdev_priv(ndev);
    
    	if (netif_running(ndev)) {
    		fec_stop(ndev);
    		netif_device_detach(ndev);
    	}
    	fec_enet_clk_enable(ndev, false);
    	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
    
    	if (fep->reg_phy)
    		regulator_disable(fep->reg_phy);
    
    	return 0;
    }
    
    static int
    fec_resume(struct device *dev)
    {
    	struct net_device *ndev = dev_get_drvdata(dev);
    	struct fec_enet_private *fep = netdev_priv(ndev);
    	int ret;
    
    	if (fep->reg_phy) {
    		ret = regulator_enable(fep->reg_phy);
    		if (ret)
    			return ret;
    	}
    
    	pinctrl_pm_select_default_state(&fep->pdev->dev);
    	ret = fec_enet_clk_enable(ndev, true);
    	if (ret)
    		goto failed_clk;
    
    	if (netif_running(ndev)) {
    		fec_restart(ndev, fep->full_duplex);
    		netif_device_attach(ndev);
    	}
    
    	return 0;
    
    failed_clk:
    	if (fep->reg_phy)
    		regulator_disable(fep->reg_phy);
    	return ret;
    }
    #endif /* CONFIG_PM_SLEEP */
    
    static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
    
    static struct platform_driver fec_driver = {
    	.driver	= {
    		.name	= DRIVER_NAME,
    		.owner	= THIS_MODULE,
    		.pm	= &fec_pm_ops,
    		.of_match_table = fec_dt_ids,
    	},
    	.id_table = fec_devtype,
    	.probe	= fec_probe,
    	.remove	= fec_drv_remove,
    };
    
    module_platform_driver(fec_driver);
    
    MODULE_ALIAS("platform:"DRIVER_NAME);
    MODULE_LICENSE("GPL");