Skip to content
Snippets Groups Projects
Select Git revision
  • f7e745f8e94492a8ac0b0a26e25f2b19d342918f
  • seco_lf-6.6.52-2.2.1 default protected
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-dtb
  • seco_lf-6.6.52-2.2.1-tr8mp-mcu
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • seco_lf-6.6.23-2.0.0_e39-e83-p4-devicetree
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_e88-dev
  • seco_lf-6.6.52-2.2.1_ov5640-mx95-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-rgb-defconfig
  • seco_lf-6.6.52-2.2.1-tr8mp-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-dtbo
  • seco_lf-6.6.52-2.2.1-tr8mp-rv3028
  • seco_lf-6.6.52-2.2.1-tr8mp-fpga
  • seco_lf-6.6.52-2.2.1_stm32g0-dev
  • seco_lf-6.6.52-2.2.1_remove-mwifiex_d18
  • seco_lf-6.6.52-2.2.1_e88-dbg-uart-dev
  • seco_lf_v2024.04_6.6.52_2.2.x-e39-e83-devicetrees
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

input.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    input.c 35.84 KiB
    // SPDX-License-Identifier: GPL-2.0-or-later
    /* SCTP kernel implementation
     * Copyright (c) 1999-2000 Cisco, Inc.
     * Copyright (c) 1999-2001 Motorola, Inc.
     * Copyright (c) 2001-2003 International Business Machines, Corp.
     * Copyright (c) 2001 Intel Corp.
     * Copyright (c) 2001 Nokia, Inc.
     * Copyright (c) 2001 La Monte H.P. Yarroll
     *
     * This file is part of the SCTP kernel implementation
     *
     * These functions handle all input from the IP layer into SCTP.
     *
     * Please send any bug reports or fixes you make to the
     * email address(es):
     *    lksctp developers <linux-sctp@vger.kernel.org>
     *
     * Written or modified by:
     *    La Monte H.P. Yarroll <piggy@acm.org>
     *    Karl Knutson <karl@athena.chicago.il.us>
     *    Xingang Guo <xingang.guo@intel.com>
     *    Jon Grimm <jgrimm@us.ibm.com>
     *    Hui Huang <hui.huang@nokia.com>
     *    Daisy Chang <daisyc@us.ibm.com>
     *    Sridhar Samudrala <sri@us.ibm.com>
     *    Ardelle Fan <ardelle.fan@intel.com>
     */
    
    #include <linux/types.h>
    #include <linux/list.h> /* For struct list_head */
    #include <linux/socket.h>
    #include <linux/ip.h>
    #include <linux/time.h> /* For struct timeval */
    #include <linux/slab.h>
    #include <net/ip.h>
    #include <net/icmp.h>
    #include <net/snmp.h>
    #include <net/sock.h>
    #include <net/xfrm.h>
    #include <net/sctp/sctp.h>
    #include <net/sctp/sm.h>
    #include <net/sctp/checksum.h>
    #include <net/net_namespace.h>
    #include <linux/rhashtable.h>
    #include <net/sock_reuseport.h>
    
    /* Forward declarations for internal helpers. */
    static int sctp_rcv_ootb(struct sk_buff *);
    static struct sctp_association *__sctp_rcv_lookup(struct net *net,
    				      struct sk_buff *skb,
    				      const union sctp_addr *paddr,
    				      const union sctp_addr *laddr,
    				      struct sctp_transport **transportp);
    static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
    					struct net *net, struct sk_buff *skb,
    					const union sctp_addr *laddr,
    					const union sctp_addr *daddr);
    static struct sctp_association *__sctp_lookup_association(
    					struct net *net,
    					const union sctp_addr *local,
    					const union sctp_addr *peer,
    					struct sctp_transport **pt);
    
    static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
    
    
    /* Calculate the SCTP checksum of an SCTP packet.  */
    static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
    {
    	struct sctphdr *sh = sctp_hdr(skb);
    	__le32 cmp = sh->checksum;
    	__le32 val = sctp_compute_cksum(skb, 0);
    
    	if (val != cmp) {
    		/* CRC failure, dump it. */
    		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
    		return -1;
    	}
    	return 0;
    }
    
    /*
     * This is the routine which IP calls when receiving an SCTP packet.
     */
    int sctp_rcv(struct sk_buff *skb)
    {
    	struct sock *sk;
    	struct sctp_association *asoc;
    	struct sctp_endpoint *ep = NULL;
    	struct sctp_ep_common *rcvr;
    	struct sctp_transport *transport = NULL;
    	struct sctp_chunk *chunk;
    	union sctp_addr src;
    	union sctp_addr dest;
    	int family;
    	struct sctp_af *af;
    	struct net *net = dev_net(skb->dev);
    	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
    
    	if (skb->pkt_type != PACKET_HOST)
    		goto discard_it;
    
    	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
    
    	/* If packet is too small to contain a single chunk, let's not
    	 * waste time on it anymore.
    	 */
    	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
    		       skb_transport_offset(skb))
    		goto discard_it;
    
    	/* If the packet is fragmented and we need to do crc checking,
    	 * it's better to just linearize it otherwise crc computing
    	 * takes longer.
    	 */
    	if ((!is_gso && skb_linearize(skb)) ||
    	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
    		goto discard_it;
    
    	/* Pull up the IP header. */
    	__skb_pull(skb, skb_transport_offset(skb));
    
    	skb->csum_valid = 0; /* Previous value not applicable */
    	if (skb_csum_unnecessary(skb))
    		__skb_decr_checksum_unnecessary(skb);
    	else if (!sctp_checksum_disable &&
    		 !is_gso &&
    		 sctp_rcv_checksum(net, skb) < 0)
    		goto discard_it;
    	skb->csum_valid = 1;
    
    	__skb_pull(skb, sizeof(struct sctphdr));
    
    	family = ipver2af(ip_hdr(skb)->version);
    	af = sctp_get_af_specific(family);
    	if (unlikely(!af))
    		goto discard_it;
    	SCTP_INPUT_CB(skb)->af = af;
    
    	/* Initialize local addresses for lookups. */
    	af->from_skb(&src, skb, 1);
    	af->from_skb(&dest, skb, 0);
    
    	/* If the packet is to or from a non-unicast address,
    	 * silently discard the packet.
    	 *
    	 * This is not clearly defined in the RFC except in section
    	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
    	 * Transmission Protocol" 2.1, "It is important to note that the
    	 * IP address of an SCTP transport address must be a routable
    	 * unicast address.  In other words, IP multicast addresses and
    	 * IP broadcast addresses cannot be used in an SCTP transport
    	 * address."
    	 */
    	if (!af->addr_valid(&src, NULL, skb) ||
    	    !af->addr_valid(&dest, NULL, skb))
    		goto discard_it;
    
    	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
    
    	if (!asoc)
    		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
    
    	/* Retrieve the common input handling substructure. */
    	rcvr = asoc ? &asoc->base : &ep->base;
    	sk = rcvr->sk;
    
    	/*
    	 * If a frame arrives on an interface and the receiving socket is
    	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
    	 */
    	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
    		if (transport) {
    			sctp_transport_put(transport);
    			asoc = NULL;
    			transport = NULL;
    		} else {
    			sctp_endpoint_put(ep);
    			ep = NULL;
    		}
    		sk = net->sctp.ctl_sock;
    		ep = sctp_sk(sk)->ep;
    		sctp_endpoint_hold(ep);
    		rcvr = &ep->base;
    	}
    
    	/*
    	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
    	 * An SCTP packet is called an "out of the blue" (OOTB)
    	 * packet if it is correctly formed, i.e., passed the
    	 * receiver's checksum check, but the receiver is not
    	 * able to identify the association to which this
    	 * packet belongs.
    	 */
    	if (!asoc) {
    		if (sctp_rcv_ootb(skb)) {
    			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
    			goto discard_release;
    		}
    	}
    
    	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
    		goto discard_release;
    	nf_reset_ct(skb);
    
    	if (sk_filter(sk, skb))
    		goto discard_release;
    
    	/* Create an SCTP packet structure. */
    	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
    	if (!chunk)
    		goto discard_release;
    	SCTP_INPUT_CB(skb)->chunk = chunk;
    
    	/* Remember what endpoint is to handle this packet. */
    	chunk->rcvr = rcvr;
    
    	/* Remember the SCTP header. */
    	chunk->sctp_hdr = sctp_hdr(skb);
    
    	/* Set the source and destination addresses of the incoming chunk.  */
    	sctp_init_addrs(chunk, &src, &dest);
    
    	/* Remember where we came from.  */
    	chunk->transport = transport;
    
    	/* Acquire access to the sock lock. Note: We are safe from other
    	 * bottom halves on this lock, but a user may be in the lock too,
    	 * so check if it is busy.
    	 */
    	bh_lock_sock(sk);
    
    	if (sk != rcvr->sk) {
    		/* Our cached sk is different from the rcvr->sk.  This is
    		 * because migrate()/accept() may have moved the association
    		 * to a new socket and released all the sockets.  So now we
    		 * are holding a lock on the old socket while the user may
    		 * be doing something with the new socket.  Switch our veiw
    		 * of the current sk.
    		 */
    		bh_unlock_sock(sk);
    		sk = rcvr->sk;
    		bh_lock_sock(sk);
    	}
    
    	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
    		if (sctp_add_backlog(sk, skb)) {
    			bh_unlock_sock(sk);
    			sctp_chunk_free(chunk);
    			skb = NULL; /* sctp_chunk_free already freed the skb */
    			goto discard_release;
    		}
    		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
    	} else {
    		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
    		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
    	}
    
    	bh_unlock_sock(sk);
    
    	/* Release the asoc/ep ref we took in the lookup calls. */
    	if (transport)
    		sctp_transport_put(transport);
    	else
    		sctp_endpoint_put(ep);
    
    	return 0;
    
    discard_it:
    	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
    	kfree_skb(skb);
    	return 0;
    
    discard_release:
    	/* Release the asoc/ep ref we took in the lookup calls. */
    	if (transport)
    		sctp_transport_put(transport);
    	else
    		sctp_endpoint_put(ep);
    
    	goto discard_it;
    }
    
    /* Process the backlog queue of the socket.  Every skb on
     * the backlog holds a ref on an association or endpoint.
     * We hold this ref throughout the state machine to make
     * sure that the structure we need is still around.
     */
    int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
    {
    	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
    	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
    	struct sctp_transport *t = chunk->transport;
    	struct sctp_ep_common *rcvr = NULL;
    	int backloged = 0;
    
    	rcvr = chunk->rcvr;
    
    	/* If the rcvr is dead then the association or endpoint
    	 * has been deleted and we can safely drop the chunk
    	 * and refs that we are holding.
    	 */
    	if (rcvr->dead) {
    		sctp_chunk_free(chunk);
    		goto done;
    	}
    
    	if (unlikely(rcvr->sk != sk)) {
    		/* In this case, the association moved from one socket to
    		 * another.  We are currently sitting on the backlog of the
    		 * old socket, so we need to move.
    		 * However, since we are here in the process context we
    		 * need to take make sure that the user doesn't own
    		 * the new socket when we process the packet.
    		 * If the new socket is user-owned, queue the chunk to the
    		 * backlog of the new socket without dropping any refs.
    		 * Otherwise, we can safely push the chunk on the inqueue.
    		 */
    
    		sk = rcvr->sk;
    		local_bh_disable();
    		bh_lock_sock(sk);
    
    		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
    			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
    				sctp_chunk_free(chunk);
    			else
    				backloged = 1;
    		} else
    			sctp_inq_push(inqueue, chunk);
    
    		bh_unlock_sock(sk);
    		local_bh_enable();
    
    		/* If the chunk was backloged again, don't drop refs */
    		if (backloged)
    			return 0;
    	} else {
    		if (!sctp_newsk_ready(sk)) {
    			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
    				return 0;
    			sctp_chunk_free(chunk);
    		} else {
    			sctp_inq_push(inqueue, chunk);
    		}
    	}
    
    done:
    	/* Release the refs we took in sctp_add_backlog */
    	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
    		sctp_transport_put(t);
    	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
    		sctp_endpoint_put(sctp_ep(rcvr));
    	else
    		BUG();
    
    	return 0;
    }
    
    static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
    {
    	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
    	struct sctp_transport *t = chunk->transport;
    	struct sctp_ep_common *rcvr = chunk->rcvr;
    	int ret;
    
    	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
    	if (!ret) {
    		/* Hold the assoc/ep while hanging on the backlog queue.
    		 * This way, we know structures we need will not disappear
    		 * from us
    		 */
    		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
    			sctp_transport_hold(t);
    		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
    			sctp_endpoint_hold(sctp_ep(rcvr));
    		else
    			BUG();
    	}
    	return ret;
    
    }
    
    /* Handle icmp frag needed error. */
    void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
    			   struct sctp_transport *t, __u32 pmtu)
    {
    	if (!t ||
    	    (t->pathmtu <= pmtu &&
    	     t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu))
    		return;
    
    	if (sock_owned_by_user(sk)) {
    		atomic_set(&t->mtu_info, pmtu);
    		asoc->pmtu_pending = 1;
    		t->pmtu_pending = 1;
    		return;
    	}
    
    	if (!(t->param_flags & SPP_PMTUD_ENABLE))
    		/* We can't allow retransmitting in such case, as the
    		 * retransmission would be sized just as before, and thus we
    		 * would get another icmp, and retransmit again.
    		 */
    		return;
    
    	/* Update transports view of the MTU. Return if no update was needed.
    	 * If an update wasn't needed/possible, it also doesn't make sense to
    	 * try to retransmit now.
    	 */
    	if (!sctp_transport_update_pmtu(t, pmtu))
    		return;
    
    	/* Update association pmtu. */
    	sctp_assoc_sync_pmtu(asoc);
    
    	/* Retransmit with the new pmtu setting. */
    	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
    }
    
    void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
    			struct sk_buff *skb)
    {
    	struct dst_entry *dst;
    
    	if (sock_owned_by_user(sk) || !t)
    		return;
    	dst = sctp_transport_dst_check(t);
    	if (dst)
    		dst->ops->redirect(dst, sk, skb);
    }
    
    /*
     * SCTP Implementer's Guide, 2.37 ICMP handling procedures
     *
     * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
     *        or a "Protocol Unreachable" treat this message as an abort
     *        with the T bit set.
     *
     * This function sends an event to the state machine, which will abort the
     * association.
     *
     */
    void sctp_icmp_proto_unreachable(struct sock *sk,
    			   struct sctp_association *asoc,
    			   struct sctp_transport *t)
    {
    	if (sock_owned_by_user(sk)) {
    		if (timer_pending(&t->proto_unreach_timer))
    			return;
    		else {
    			if (!mod_timer(&t->proto_unreach_timer,
    						jiffies + (HZ/20)))
    				sctp_transport_hold(t);
    		}
    	} else {
    		struct net *net = sock_net(sk);
    
    		pr_debug("%s: unrecognized next header type "
    			 "encountered!\n", __func__);
    
    		if (del_timer(&t->proto_unreach_timer))
    			sctp_transport_put(t);
    
    		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
    			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
    			   asoc->state, asoc->ep, asoc, t,
    			   GFP_ATOMIC);
    	}
    }
    
    /* Common lookup code for icmp/icmpv6 error handler. */
    struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
    			     struct sctphdr *sctphdr,
    			     struct sctp_association **app,
    			     struct sctp_transport **tpp)
    {
    	struct sctp_init_chunk *chunkhdr, _chunkhdr;
    	union sctp_addr saddr;
    	union sctp_addr daddr;
    	struct sctp_af *af;
    	struct sock *sk = NULL;
    	struct sctp_association *asoc;
    	struct sctp_transport *transport = NULL;
    	__u32 vtag = ntohl(sctphdr->vtag);
    
    	*app = NULL; *tpp = NULL;
    
    	af = sctp_get_af_specific(family);
    	if (unlikely(!af)) {
    		return NULL;
    	}
    
    	/* Initialize local addresses for lookups. */
    	af->from_skb(&saddr, skb, 1);
    	af->from_skb(&daddr, skb, 0);
    
    	/* Look for an association that matches the incoming ICMP error
    	 * packet.
    	 */
    	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
    	if (!asoc)
    		return NULL;
    
    	sk = asoc->base.sk;
    
    	/* RFC 4960, Appendix C. ICMP Handling
    	 *
    	 * ICMP6) An implementation MUST validate that the Verification Tag
    	 * contained in the ICMP message matches the Verification Tag of
    	 * the peer.  If the Verification Tag is not 0 and does NOT
    	 * match, discard the ICMP message.  If it is 0 and the ICMP
    	 * message contains enough bytes to verify that the chunk type is
    	 * an INIT chunk and that the Initiate Tag matches the tag of the
    	 * peer, continue with ICMP7.  If the ICMP message is too short
    	 * or the chunk type or the Initiate Tag does not match, silently
    	 * discard the packet.
    	 */
    	if (vtag == 0) {
    		/* chunk header + first 4 octects of init header */
    		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
    					      sizeof(struct sctphdr),
    					      sizeof(struct sctp_chunkhdr) +
    					      sizeof(__be32), &_chunkhdr);
    		if (!chunkhdr ||
    		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
    		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
    			goto out;
    
    	} else if (vtag != asoc->c.peer_vtag) {
    		goto out;
    	}
    
    	bh_lock_sock(sk);
    
    	/* If too many ICMPs get dropped on busy
    	 * servers this needs to be solved differently.
    	 */
    	if (sock_owned_by_user(sk))
    		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
    
    	*app = asoc;
    	*tpp = transport;
    	return sk;
    
    out:
    	sctp_transport_put(transport);
    	return NULL;
    }
    
    /* Common cleanup code for icmp/icmpv6 error handler. */
    void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
    	__releases(&((__sk)->sk_lock.slock))
    {
    	bh_unlock_sock(sk);
    	sctp_transport_put(t);
    }
    
    static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb,
    			       __u8 type, __u8 code, __u32 info)
    {
    	struct sctp_association *asoc = t->asoc;
    	struct sock *sk = asoc->base.sk;
    	int err = 0;
    
    	switch (type) {
    	case ICMP_PARAMETERPROB:
    		err = EPROTO;
    		break;
    	case ICMP_DEST_UNREACH:
    		if (code > NR_ICMP_UNREACH)
    			return;
    		if (code == ICMP_FRAG_NEEDED) {
    			sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info));
    			return;
    		}
    		if (code == ICMP_PROT_UNREACH) {
    			sctp_icmp_proto_unreachable(sk, asoc, t);
    			return;
    		}
    		err = icmp_err_convert[code].errno;
    		break;
    	case ICMP_TIME_EXCEEDED:
    		if (code == ICMP_EXC_FRAGTIME)
    			return;
    
    		err = EHOSTUNREACH;
    		break;
    	case ICMP_REDIRECT:
    		sctp_icmp_redirect(sk, t, skb);
    		return;
    	default:
    		return;
    	}
    	if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) {
    		sk->sk_err = err;
    		sk_error_report(sk);
    	} else {  /* Only an error on timeout */
    		sk->sk_err_soft = err;
    	}
    }
    
    /*
     * This routine is called by the ICMP module when it gets some
     * sort of error condition.  If err < 0 then the socket should
     * be closed and the error returned to the user.  If err > 0
     * it's just the icmp type << 8 | icmp code.  After adjustment
     * header points to the first 8 bytes of the sctp header.  We need
     * to find the appropriate port.
     *
     * The locking strategy used here is very "optimistic". When
     * someone else accesses the socket the ICMP is just dropped
     * and for some paths there is no check at all.
     * A more general error queue to queue errors for later handling
     * is probably better.
     *
     */
    int sctp_v4_err(struct sk_buff *skb, __u32 info)
    {
    	const struct iphdr *iph = (const struct iphdr *)skb->data;
    	const int type = icmp_hdr(skb)->type;
    	const int code = icmp_hdr(skb)->code;
    	struct net *net = dev_net(skb->dev);
    	struct sctp_transport *transport;
    	struct sctp_association *asoc;
    	__u16 saveip, savesctp;
    	struct sock *sk;
    
    	/* Fix up skb to look at the embedded net header. */
    	saveip = skb->network_header;
    	savesctp = skb->transport_header;
    	skb_reset_network_header(skb);
    	skb_set_transport_header(skb, iph->ihl * 4);
    	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
    	/* Put back, the original values. */
    	skb->network_header = saveip;
    	skb->transport_header = savesctp;
    	if (!sk) {
    		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
    		return -ENOENT;
    	}
    
    	sctp_v4_err_handle(transport, skb, type, code, info);
    	sctp_err_finish(sk, transport);
    
    	return 0;
    }
    
    int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb)
    {
    	struct net *net = dev_net(skb->dev);
    	struct sctp_association *asoc;
    	struct sctp_transport *t;
    	struct icmphdr *hdr;
    	__u32 info = 0;
    
    	skb->transport_header += sizeof(struct udphdr);
    	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t);
    	if (!sk) {
    		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
    		return -ENOENT;
    	}
    
    	skb->transport_header -= sizeof(struct udphdr);
    	hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr));
    	if (hdr->type == ICMP_REDIRECT) {
    		/* can't be handled without outer iphdr known, leave it to udp_err */
    		sctp_err_finish(sk, t);
    		return 0;
    	}
    	if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED)
    		info = ntohs(hdr->un.frag.mtu);
    	sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info);
    
    	sctp_err_finish(sk, t);
    	return 1;
    }
    
    /*
     * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
     *
     * This function scans all the chunks in the OOTB packet to determine if
     * the packet should be discarded right away.  If a response might be needed
     * for this packet, or, if further processing is possible, the packet will
     * be queued to a proper inqueue for the next phase of handling.
     *
     * Output:
     * Return 0 - If further processing is needed.
     * Return 1 - If the packet can be discarded right away.
     */
    static int sctp_rcv_ootb(struct sk_buff *skb)
    {
    	struct sctp_chunkhdr *ch, _ch;
    	int ch_end, offset = 0;
    
    	/* Scan through all the chunks in the packet.  */
    	do {
    		/* Make sure we have at least the header there */
    		if (offset + sizeof(_ch) > skb->len)
    			break;
    
    		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
    
    		/* Break out if chunk length is less then minimal. */
    		if (!ch || ntohs(ch->length) < sizeof(_ch))
    			break;
    
    		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
    		if (ch_end > skb->len)
    			break;
    
    		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
    		 * receiver MUST silently discard the OOTB packet and take no
    		 * further action.
    		 */
    		if (SCTP_CID_ABORT == ch->type)
    			goto discard;
    
    		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
    		 * chunk, the receiver should silently discard the packet
    		 * and take no further action.
    		 */
    		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
    			goto discard;
    
    		/* RFC 4460, 2.11.2
    		 * This will discard packets with INIT chunk bundled as
    		 * subsequent chunks in the packet.  When INIT is first,
    		 * the normal INIT processing will discard the chunk.
    		 */
    		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
    			goto discard;
    
    		offset = ch_end;
    	} while (ch_end < skb->len);
    
    	return 0;
    
    discard:
    	return 1;
    }
    
    /* Insert endpoint into the hash table.  */
    static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
    {
    	struct sock *sk = ep->base.sk;
    	struct net *net = sock_net(sk);
    	struct sctp_hashbucket *head;
    	struct sctp_ep_common *epb;
    
    	epb = &ep->base;
    	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
    	head = &sctp_ep_hashtable[epb->hashent];
    
    	if (sk->sk_reuseport) {
    		bool any = sctp_is_ep_boundall(sk);
    		struct sctp_ep_common *epb2;
    		struct list_head *list;
    		int cnt = 0, err = 1;
    
    		list_for_each(list, &ep->base.bind_addr.address_list)
    			cnt++;
    
    		sctp_for_each_hentry(epb2, &head->chain) {
    			struct sock *sk2 = epb2->sk;
    
    			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
    			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
    			    !sk2->sk_reuseport)
    				continue;
    
    			err = sctp_bind_addrs_check(sctp_sk(sk2),
    						    sctp_sk(sk), cnt);
    			if (!err) {
    				err = reuseport_add_sock(sk, sk2, any);
    				if (err)
    					return err;
    				break;
    			} else if (err < 0) {
    				return err;
    			}
    		}
    
    		if (err) {
    			err = reuseport_alloc(sk, any);
    			if (err)
    				return err;
    		}
    	}
    
    	write_lock(&head->lock);
    	hlist_add_head(&epb->node, &head->chain);
    	write_unlock(&head->lock);
    	return 0;
    }
    
    /* Add an endpoint to the hash. Local BH-safe. */
    int sctp_hash_endpoint(struct sctp_endpoint *ep)
    {
    	int err;
    
    	local_bh_disable();
    	err = __sctp_hash_endpoint(ep);
    	local_bh_enable();
    
    	return err;
    }
    
    /* Remove endpoint from the hash table.  */
    static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
    {
    	struct sock *sk = ep->base.sk;
    	struct sctp_hashbucket *head;
    	struct sctp_ep_common *epb;
    
    	epb = &ep->base;
    
    	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
    
    	head = &sctp_ep_hashtable[epb->hashent];
    
    	if (rcu_access_pointer(sk->sk_reuseport_cb))
    		reuseport_detach_sock(sk);
    
    	write_lock(&head->lock);
    	hlist_del_init(&epb->node);
    	write_unlock(&head->lock);
    }
    
    /* Remove endpoint from the hash.  Local BH-safe. */
    void sctp_unhash_endpoint(struct sctp_endpoint *ep)
    {
    	local_bh_disable();
    	__sctp_unhash_endpoint(ep);
    	local_bh_enable();
    }
    
    static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
    				const union sctp_addr *paddr, __u32 seed)
    {
    	__u32 addr;
    
    	if (paddr->sa.sa_family == AF_INET6)
    		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
    	else
    		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
    
    	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
    			     (__force __u32)lport, net_hash_mix(net), seed);
    }
    
    /* Look up an endpoint. */
    static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
    					struct net *net, struct sk_buff *skb,
    					const union sctp_addr *laddr,
    					const union sctp_addr *paddr)
    {
    	struct sctp_hashbucket *head;
    	struct sctp_ep_common *epb;
    	struct sctp_endpoint *ep;
    	struct sock *sk;
    	__be16 lport;
    	int hash;
    
    	lport = laddr->v4.sin_port;
    	hash = sctp_ep_hashfn(net, ntohs(lport));
    	head = &sctp_ep_hashtable[hash];
    	read_lock(&head->lock);
    	sctp_for_each_hentry(epb, &head->chain) {
    		ep = sctp_ep(epb);
    		if (sctp_endpoint_is_match(ep, net, laddr))
    			goto hit;
    	}
    
    	ep = sctp_sk(net->sctp.ctl_sock)->ep;
    
    hit:
    	sk = ep->base.sk;
    	if (sk->sk_reuseport) {
    		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
    
    		sk = reuseport_select_sock(sk, phash, skb,
    					   sizeof(struct sctphdr));
    		if (sk)
    			ep = sctp_sk(sk)->ep;
    	}
    	sctp_endpoint_hold(ep);
    	read_unlock(&head->lock);
    	return ep;
    }
    
    /* rhashtable for transport */
    struct sctp_hash_cmp_arg {
    	const union sctp_addr	*paddr;
    	const struct net	*net;
    	__be16			lport;
    };
    
    static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
    				const void *ptr)
    {
    	struct sctp_transport *t = (struct sctp_transport *)ptr;
    	const struct sctp_hash_cmp_arg *x = arg->key;
    	int err = 1;
    
    	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
    		return err;
    	if (!sctp_transport_hold(t))
    		return err;
    
    	if (!net_eq(t->asoc->base.net, x->net))
    		goto out;
    	if (x->lport != htons(t->asoc->base.bind_addr.port))
    		goto out;
    
    	err = 0;
    out:
    	sctp_transport_put(t);
    	return err;
    }
    
    static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
    {
    	const struct sctp_transport *t = data;
    
    	return sctp_hashfn(t->asoc->base.net,
    			   htons(t->asoc->base.bind_addr.port),
    			   &t->ipaddr, seed);
    }
    
    static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
    {
    	const struct sctp_hash_cmp_arg *x = data;
    
    	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
    }
    
    static const struct rhashtable_params sctp_hash_params = {
    	.head_offset		= offsetof(struct sctp_transport, node),
    	.hashfn			= sctp_hash_key,
    	.obj_hashfn		= sctp_hash_obj,
    	.obj_cmpfn		= sctp_hash_cmp,
    	.automatic_shrinking	= true,
    };
    
    int sctp_transport_hashtable_init(void)
    {
    	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
    }
    
    void sctp_transport_hashtable_destroy(void)
    {
    	rhltable_destroy(&sctp_transport_hashtable);
    }
    
    int sctp_hash_transport(struct sctp_transport *t)
    {
    	struct sctp_transport *transport;
    	struct rhlist_head *tmp, *list;
    	struct sctp_hash_cmp_arg arg;
    	int err;
    
    	if (t->asoc->temp)
    		return 0;
    
    	arg.net   = t->asoc->base.net;
    	arg.paddr = &t->ipaddr;
    	arg.lport = htons(t->asoc->base.bind_addr.port);
    
    	rcu_read_lock();
    	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
    			       sctp_hash_params);
    
    	rhl_for_each_entry_rcu(transport, tmp, list, node)
    		if (transport->asoc->ep == t->asoc->ep) {
    			rcu_read_unlock();
    			return -EEXIST;
    		}
    	rcu_read_unlock();
    
    	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
    				  &t->node, sctp_hash_params);
    	if (err)
    		pr_err_once("insert transport fail, errno %d\n", err);
    
    	return err;
    }
    
    void sctp_unhash_transport(struct sctp_transport *t)
    {
    	if (t->asoc->temp)
    		return;
    
    	rhltable_remove(&sctp_transport_hashtable, &t->node,
    			sctp_hash_params);
    }
    
    /* return a transport with holding it */
    struct sctp_transport *sctp_addrs_lookup_transport(
    				struct net *net,
    				const union sctp_addr *laddr,
    				const union sctp_addr *paddr)
    {
    	struct rhlist_head *tmp, *list;
    	struct sctp_transport *t;
    	struct sctp_hash_cmp_arg arg = {
    		.paddr = paddr,
    		.net   = net,
    		.lport = laddr->v4.sin_port,
    	};
    
    	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
    			       sctp_hash_params);
    
    	rhl_for_each_entry_rcu(t, tmp, list, node) {
    		if (!sctp_transport_hold(t))
    			continue;
    
    		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
    					 laddr, sctp_sk(t->asoc->base.sk)))
    			return t;
    		sctp_transport_put(t);
    	}
    
    	return NULL;
    }
    
    /* return a transport without holding it, as it's only used under sock lock */
    struct sctp_transport *sctp_epaddr_lookup_transport(
    				const struct sctp_endpoint *ep,
    				const union sctp_addr *paddr)
    {
    	struct rhlist_head *tmp, *list;
    	struct sctp_transport *t;
    	struct sctp_hash_cmp_arg arg = {
    		.paddr = paddr,
    		.net   = ep->base.net,
    		.lport = htons(ep->base.bind_addr.port),
    	};
    
    	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
    			       sctp_hash_params);
    
    	rhl_for_each_entry_rcu(t, tmp, list, node)
    		if (ep == t->asoc->ep)
    			return t;
    
    	return NULL;
    }
    
    /* Look up an association. */
    static struct sctp_association *__sctp_lookup_association(
    					struct net *net,
    					const union sctp_addr *local,
    					const union sctp_addr *peer,
    					struct sctp_transport **pt)
    {
    	struct sctp_transport *t;
    	struct sctp_association *asoc = NULL;
    
    	t = sctp_addrs_lookup_transport(net, local, peer);
    	if (!t)
    		goto out;
    
    	asoc = t->asoc;
    	*pt = t;
    
    out:
    	return asoc;
    }
    
    /* Look up an association. protected by RCU read lock */
    static
    struct sctp_association *sctp_lookup_association(struct net *net,
    						 const union sctp_addr *laddr,
    						 const union sctp_addr *paddr,
    						 struct sctp_transport **transportp)
    {
    	struct sctp_association *asoc;
    
    	rcu_read_lock();
    	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
    	rcu_read_unlock();
    
    	return asoc;
    }
    
    /* Is there an association matching the given local and peer addresses? */
    bool sctp_has_association(struct net *net,
    			  const union sctp_addr *laddr,
    			  const union sctp_addr *paddr)
    {
    	struct sctp_transport *transport;
    
    	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
    		sctp_transport_put(transport);
    		return true;
    	}
    
    	return false;
    }
    
    /*
     * SCTP Implementors Guide, 2.18 Handling of address
     * parameters within the INIT or INIT-ACK.
     *
     * D) When searching for a matching TCB upon reception of an INIT
     *    or INIT-ACK chunk the receiver SHOULD use not only the
     *    source address of the packet (containing the INIT or
     *    INIT-ACK) but the receiver SHOULD also use all valid
     *    address parameters contained within the chunk.
     *
     * 2.18.3 Solution description
     *
     * This new text clearly specifies to an implementor the need
     * to look within the INIT or INIT-ACK. Any implementation that
     * does not do this, may not be able to establish associations
     * in certain circumstances.
     *
     */
    static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
    	struct sk_buff *skb,
    	const union sctp_addr *laddr, struct sctp_transport **transportp)
    {
    	struct sctp_association *asoc;
    	union sctp_addr addr;
    	union sctp_addr *paddr = &addr;
    	struct sctphdr *sh = sctp_hdr(skb);
    	union sctp_params params;
    	struct sctp_init_chunk *init;
    	struct sctp_af *af;
    
    	/*
    	 * This code will NOT touch anything inside the chunk--it is
    	 * strictly READ-ONLY.
    	 *
    	 * RFC 2960 3  SCTP packet Format
    	 *
    	 * Multiple chunks can be bundled into one SCTP packet up to
    	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
    	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
    	 * other chunk in a packet.  See Section 6.10 for more details
    	 * on chunk bundling.
    	 */
    
    	/* Find the start of the TLVs and the end of the chunk.  This is
    	 * the region we search for address parameters.
    	 */
    	init = (struct sctp_init_chunk *)skb->data;
    
    	/* Walk the parameters looking for embedded addresses. */
    	sctp_walk_params(params, init, init_hdr.params) {
    
    		/* Note: Ignoring hostname addresses. */
    		af = sctp_get_af_specific(param_type2af(params.p->type));
    		if (!af)
    			continue;
    
    		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
    			continue;
    
    		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
    		if (asoc)
    			return asoc;
    	}
    
    	return NULL;
    }
    
    /* ADD-IP, Section 5.2
     * When an endpoint receives an ASCONF Chunk from the remote peer
     * special procedures may be needed to identify the association the
     * ASCONF Chunk is associated with. To properly find the association
     * the following procedures SHOULD be followed:
     *
     * D2) If the association is not found, use the address found in the
     * Address Parameter TLV combined with the port number found in the
     * SCTP common header. If found proceed to rule D4.
     *
     * D2-ext) If more than one ASCONF Chunks are packed together, use the
     * address found in the ASCONF Address Parameter TLV of each of the
     * subsequent ASCONF Chunks. If found, proceed to rule D4.
     */
    static struct sctp_association *__sctp_rcv_asconf_lookup(
    					struct net *net,
    					struct sctp_chunkhdr *ch,
    					const union sctp_addr *laddr,
    					__be16 peer_port,
    					struct sctp_transport **transportp)
    {
    	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
    	struct sctp_af *af;
    	union sctp_addr_param *param;
    	union sctp_addr paddr;
    
    	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
    		return NULL;
    
    	/* Skip over the ADDIP header and find the Address parameter */
    	param = (union sctp_addr_param *)(asconf + 1);
    
    	af = sctp_get_af_specific(param_type2af(param->p.type));
    	if (unlikely(!af))
    		return NULL;
    
    	if (!af->from_addr_param(&paddr, param, peer_port, 0))
    		return NULL;
    
    	return __sctp_lookup_association(net, laddr, &paddr, transportp);
    }
    
    
    /* SCTP-AUTH, Section 6.3:
    *    If the receiver does not find a STCB for a packet containing an AUTH
    *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
    *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
    *    association.
    *
    * This means that any chunks that can help us identify the association need
    * to be looked at to find this association.
    */
    static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
    				      struct sk_buff *skb,
    				      const union sctp_addr *laddr,
    				      struct sctp_transport **transportp)
    {
    	struct sctp_association *asoc = NULL;
    	struct sctp_chunkhdr *ch;
    	int have_auth = 0;
    	unsigned int chunk_num = 1;
    	__u8 *ch_end;
    
    	/* Walk through the chunks looking for AUTH or ASCONF chunks
    	 * to help us find the association.
    	 */
    	ch = (struct sctp_chunkhdr *)skb->data;
    	do {
    		/* Break out if chunk length is less then minimal. */
    		if (ntohs(ch->length) < sizeof(*ch))
    			break;
    
    		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
    		if (ch_end > skb_tail_pointer(skb))
    			break;
    
    		switch (ch->type) {
    		case SCTP_CID_AUTH:
    			have_auth = chunk_num;
    			break;
    
    		case SCTP_CID_COOKIE_ECHO:
    			/* If a packet arrives containing an AUTH chunk as
    			 * a first chunk, a COOKIE-ECHO chunk as the second
    			 * chunk, and possibly more chunks after them, and
    			 * the receiver does not have an STCB for that
    			 * packet, then authentication is based on
    			 * the contents of the COOKIE- ECHO chunk.
    			 */
    			if (have_auth == 1 && chunk_num == 2)
    				return NULL;
    			break;
    
    		case SCTP_CID_ASCONF:
    			if (have_auth || net->sctp.addip_noauth)
    				asoc = __sctp_rcv_asconf_lookup(
    						net, ch, laddr,
    						sctp_hdr(skb)->source,
    						transportp);
    			break;
    		default:
    			break;
    		}
    
    		if (asoc)
    			break;
    
    		ch = (struct sctp_chunkhdr *)ch_end;
    		chunk_num++;
    	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
    
    	return asoc;
    }
    
    /*
     * There are circumstances when we need to look inside the SCTP packet
     * for information to help us find the association.   Examples
     * include looking inside of INIT/INIT-ACK chunks or after the AUTH
     * chunks.
     */
    static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
    				      struct sk_buff *skb,
    				      const union sctp_addr *laddr,
    				      struct sctp_transport **transportp)
    {
    	struct sctp_chunkhdr *ch;
    
    	/* We do not allow GSO frames here as we need to linearize and
    	 * then cannot guarantee frame boundaries. This shouldn't be an
    	 * issue as packets hitting this are mostly INIT or INIT-ACK and
    	 * those cannot be on GSO-style anyway.
    	 */
    	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
    		return NULL;
    
    	ch = (struct sctp_chunkhdr *)skb->data;
    
    	/* The code below will attempt to walk the chunk and extract
    	 * parameter information.  Before we do that, we need to verify
    	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
    	 * walk off the end.
    	 */
    	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
    		return NULL;
    
    	/* If this is INIT/INIT-ACK look inside the chunk too. */
    	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
    		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
    
    	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
    }
    
    /* Lookup an association for an inbound skb. */
    static struct sctp_association *__sctp_rcv_lookup(struct net *net,
    				      struct sk_buff *skb,
    				      const union sctp_addr *paddr,
    				      const union sctp_addr *laddr,
    				      struct sctp_transport **transportp)
    {
    	struct sctp_association *asoc;
    
    	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
    	if (asoc)
    		goto out;
    
    	/* Further lookup for INIT/INIT-ACK packets.
    	 * SCTP Implementors Guide, 2.18 Handling of address
    	 * parameters within the INIT or INIT-ACK.
    	 */
    	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
    	if (asoc)
    		goto out;
    
    	if (paddr->sa.sa_family == AF_INET)
    		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
    			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
    			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
    	else
    		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
    			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
    			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
    
    out:
    	return asoc;
    }