Skip to content
Snippets Groups Projects
Select Git revision
  • e60329c97b9cc07ce15e3c39fc42e57bf14add92
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-sdio-wp
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • seco_lf-6.6.52-2.2.1_e88-e83-init
  • seco_lf-6.6.52-2.2.1_e88-g101ean02
  • seco_lf-6.6.52-2.2.1_e88-sscg
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

fault.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    fault.c 26.22 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    /*
     * Based on arch/arm/mm/fault.c
     *
     * Copyright (C) 1995  Linus Torvalds
     * Copyright (C) 1995-2004 Russell King
     * Copyright (C) 2012 ARM Ltd.
     */
    
    #include <linux/acpi.h>
    #include <linux/bitfield.h>
    #include <linux/extable.h>
    #include <linux/signal.h>
    #include <linux/mm.h>
    #include <linux/hardirq.h>
    #include <linux/init.h>
    #include <linux/kprobes.h>
    #include <linux/uaccess.h>
    #include <linux/page-flags.h>
    #include <linux/sched/signal.h>
    #include <linux/sched/debug.h>
    #include <linux/highmem.h>
    #include <linux/perf_event.h>
    #include <linux/preempt.h>
    #include <linux/hugetlb.h>
    
    #include <asm/acpi.h>
    #include <asm/bug.h>
    #include <asm/cmpxchg.h>
    #include <asm/cpufeature.h>
    #include <asm/exception.h>
    #include <asm/daifflags.h>
    #include <asm/debug-monitors.h>
    #include <asm/esr.h>
    #include <asm/kasan.h>
    #include <asm/sysreg.h>
    #include <asm/system_misc.h>
    #include <asm/pgtable.h>
    #include <asm/tlbflush.h>
    #include <asm/traps.h>
    
    struct fault_info {
    	int	(*fn)(unsigned long addr, unsigned int esr,
    		      struct pt_regs *regs);
    	int	sig;
    	int	code;
    	const char *name;
    };
    
    static const struct fault_info fault_info[];
    static struct fault_info debug_fault_info[];
    
    static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
    {
    	return fault_info + (esr & ESR_ELx_FSC);
    }
    
    static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
    {
    	return debug_fault_info + DBG_ESR_EVT(esr);
    }
    
    static void data_abort_decode(unsigned int esr)
    {
    	pr_alert("Data abort info:\n");
    
    	if (esr & ESR_ELx_ISV) {
    		pr_alert("  Access size = %u byte(s)\n",
    			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
    		pr_alert("  SSE = %lu, SRT = %lu\n",
    			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
    			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
    		pr_alert("  SF = %lu, AR = %lu\n",
    			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
    			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
    	} else {
    		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
    	}
    
    	pr_alert("  CM = %lu, WnR = %lu\n",
    		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
    		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
    }
    
    static void mem_abort_decode(unsigned int esr)
    {
    	pr_alert("Mem abort info:\n");
    
    	pr_alert("  ESR = 0x%08x\n", esr);
    	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
    		 ESR_ELx_EC(esr), esr_get_class_string(esr),
    		 (esr & ESR_ELx_IL) ? 32 : 16);
    	pr_alert("  SET = %lu, FnV = %lu\n",
    		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
    		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
    	pr_alert("  EA = %lu, S1PTW = %lu\n",
    		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
    		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
    
    	if (esr_is_data_abort(esr))
    		data_abort_decode(esr);
    }
    
    static inline bool is_ttbr0_addr(unsigned long addr)
    {
    	/* entry assembly clears tags for TTBR0 addrs */
    	return addr < TASK_SIZE;
    }
    
    static inline bool is_ttbr1_addr(unsigned long addr)
    {
    	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
    	return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
    }
    
    static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
    {
    	/* Either init_pg_dir or swapper_pg_dir */
    	if (mm == &init_mm)
    		return __pa_symbol(mm->pgd);
    
    	return (unsigned long)virt_to_phys(mm->pgd);
    }
    
    /*
     * Dump out the page tables associated with 'addr' in the currently active mm.
     */
    static void show_pte(unsigned long addr)
    {
    	struct mm_struct *mm;
    	pgd_t *pgdp;
    	pgd_t pgd;
    
    	if (is_ttbr0_addr(addr)) {
    		/* TTBR0 */
    		mm = current->active_mm;
    		if (mm == &init_mm) {
    			pr_alert("[%016lx] user address but active_mm is swapper\n",
    				 addr);
    			return;
    		}
    	} else if (is_ttbr1_addr(addr)) {
    		/* TTBR1 */
    		mm = &init_mm;
    	} else {
    		pr_alert("[%016lx] address between user and kernel address ranges\n",
    			 addr);
    		return;
    	}
    
    	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
    		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
    		 vabits_actual, mm_to_pgd_phys(mm));
    	pgdp = pgd_offset(mm, addr);
    	pgd = READ_ONCE(*pgdp);
    	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
    
    	do {
    		pud_t *pudp, pud;
    		pmd_t *pmdp, pmd;
    		pte_t *ptep, pte;
    
    		if (pgd_none(pgd) || pgd_bad(pgd))
    			break;
    
    		pudp = pud_offset(pgdp, addr);
    		pud = READ_ONCE(*pudp);
    		pr_cont(", pud=%016llx", pud_val(pud));
    		if (pud_none(pud) || pud_bad(pud))
    			break;
    
    		pmdp = pmd_offset(pudp, addr);
    		pmd = READ_ONCE(*pmdp);
    		pr_cont(", pmd=%016llx", pmd_val(pmd));
    		if (pmd_none(pmd) || pmd_bad(pmd))
    			break;
    
    		ptep = pte_offset_map(pmdp, addr);
    		pte = READ_ONCE(*ptep);
    		pr_cont(", pte=%016llx", pte_val(pte));
    		pte_unmap(ptep);
    	} while(0);
    
    	pr_cont("\n");
    }
    
    /*
     * This function sets the access flags (dirty, accessed), as well as write
     * permission, and only to a more permissive setting.
     *
     * It needs to cope with hardware update of the accessed/dirty state by other
     * agents in the system and can safely skip the __sync_icache_dcache() call as,
     * like set_pte_at(), the PTE is never changed from no-exec to exec here.
     *
     * Returns whether or not the PTE actually changed.
     */
    int ptep_set_access_flags(struct vm_area_struct *vma,
    			  unsigned long address, pte_t *ptep,
    			  pte_t entry, int dirty)
    {
    	pteval_t old_pteval, pteval;
    	pte_t pte = READ_ONCE(*ptep);
    
    	if (pte_same(pte, entry))
    		return 0;
    
    	/* only preserve the access flags and write permission */
    	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
    
    	/*
    	 * Setting the flags must be done atomically to avoid racing with the
    	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
    	 * be set to the most permissive (lowest value) of *ptep and entry
    	 * (calculated as: a & b == ~(~a | ~b)).
    	 */
    	pte_val(entry) ^= PTE_RDONLY;
    	pteval = pte_val(pte);
    	do {
    		old_pteval = pteval;
    		pteval ^= PTE_RDONLY;
    		pteval |= pte_val(entry);
    		pteval ^= PTE_RDONLY;
    		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
    	} while (pteval != old_pteval);
    
    	flush_tlb_fix_spurious_fault(vma, address);
    	return 1;
    }
    
    static bool is_el1_instruction_abort(unsigned int esr)
    {
    	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
    }
    
    static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
    					   struct pt_regs *regs)
    {
    	unsigned int ec       = ESR_ELx_EC(esr);
    	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
    
    	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
    		return false;
    
    	if (fsc_type == ESR_ELx_FSC_PERM)
    		return true;
    
    	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
    		return fsc_type == ESR_ELx_FSC_FAULT &&
    			(regs->pstate & PSR_PAN_BIT);
    
    	return false;
    }
    
    static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
    							unsigned int esr,
    							struct pt_regs *regs)
    {
    	unsigned long flags;
    	u64 par, dfsc;
    
    	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
    	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
    		return false;
    
    	local_irq_save(flags);
    	asm volatile("at s1e1r, %0" :: "r" (addr));
    	isb();
    	par = read_sysreg(par_el1);
    	local_irq_restore(flags);
    
    	if (!(par & SYS_PAR_EL1_F))
    		return false;
    
    	/*
    	 * If we got a different type of fault from the AT instruction,
    	 * treat the translation fault as spurious.
    	 */
    	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
    	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
    }
    
    static void die_kernel_fault(const char *msg, unsigned long addr,
    			     unsigned int esr, struct pt_regs *regs)
    {
    	bust_spinlocks(1);
    
    	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
    		 addr);
    
    	mem_abort_decode(esr);
    
    	show_pte(addr);
    	die("Oops", regs, esr);
    	bust_spinlocks(0);
    	do_exit(SIGKILL);
    }
    
    static void __do_kernel_fault(unsigned long addr, unsigned int esr,
    			      struct pt_regs *regs)
    {
    	const char *msg;
    
    	/*
    	 * Are we prepared to handle this kernel fault?
    	 * We are almost certainly not prepared to handle instruction faults.
    	 */
    	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
    		return;
    
    	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
    	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
    		return;
    
    	if (is_el1_permission_fault(addr, esr, regs)) {
    		if (esr & ESR_ELx_WNR)
    			msg = "write to read-only memory";
    		else
    			msg = "read from unreadable memory";
    	} else if (addr < PAGE_SIZE) {
    		msg = "NULL pointer dereference";
    	} else {
    		msg = "paging request";
    	}
    
    	die_kernel_fault(msg, addr, esr, regs);
    }
    
    static void set_thread_esr(unsigned long address, unsigned int esr)
    {
    	current->thread.fault_address = address;
    
    	/*
    	 * If the faulting address is in the kernel, we must sanitize the ESR.
    	 * From userspace's point of view, kernel-only mappings don't exist
    	 * at all, so we report them as level 0 translation faults.
    	 * (This is not quite the way that "no mapping there at all" behaves:
    	 * an alignment fault not caused by the memory type would take
    	 * precedence over translation fault for a real access to empty
    	 * space. Unfortunately we can't easily distinguish "alignment fault
    	 * not caused by memory type" from "alignment fault caused by memory
    	 * type", so we ignore this wrinkle and just return the translation
    	 * fault.)
    	 */
    	if (!is_ttbr0_addr(current->thread.fault_address)) {
    		switch (ESR_ELx_EC(esr)) {
    		case ESR_ELx_EC_DABT_LOW:
    			/*
    			 * These bits provide only information about the
    			 * faulting instruction, which userspace knows already.
    			 * We explicitly clear bits which are architecturally
    			 * RES0 in case they are given meanings in future.
    			 * We always report the ESR as if the fault was taken
    			 * to EL1 and so ISV and the bits in ISS[23:14] are
    			 * clear. (In fact it always will be a fault to EL1.)
    			 */
    			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
    				ESR_ELx_CM | ESR_ELx_WNR;
    			esr |= ESR_ELx_FSC_FAULT;
    			break;
    		case ESR_ELx_EC_IABT_LOW:
    			/*
    			 * Claim a level 0 translation fault.
    			 * All other bits are architecturally RES0 for faults
    			 * reported with that DFSC value, so we clear them.
    			 */
    			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
    			esr |= ESR_ELx_FSC_FAULT;
    			break;
    		default:
    			/*
    			 * This should never happen (entry.S only brings us
    			 * into this code for insn and data aborts from a lower
    			 * exception level). Fail safe by not providing an ESR
    			 * context record at all.
    			 */
    			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
    			esr = 0;
    			break;
    		}
    	}
    
    	current->thread.fault_code = esr;
    }
    
    static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
    {
    	/*
    	 * If we are in kernel mode at this point, we have no context to
    	 * handle this fault with.
    	 */
    	if (user_mode(regs)) {
    		const struct fault_info *inf = esr_to_fault_info(esr);
    
    		set_thread_esr(addr, esr);
    		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
    				      inf->name);
    	} else {
    		__do_kernel_fault(addr, esr, regs);
    	}
    }
    
    #define VM_FAULT_BADMAP		0x010000
    #define VM_FAULT_BADACCESS	0x020000
    
    static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
    			   unsigned int mm_flags, unsigned long vm_flags)
    {
    	struct vm_area_struct *vma = find_vma(mm, addr);
    
    	if (unlikely(!vma))
    		return VM_FAULT_BADMAP;
    
    	/*
    	 * Ok, we have a good vm_area for this memory access, so we can handle
    	 * it.
    	 */
    	if (unlikely(vma->vm_start > addr)) {
    		if (!(vma->vm_flags & VM_GROWSDOWN))
    			return VM_FAULT_BADMAP;
    		if (expand_stack(vma, addr))
    			return VM_FAULT_BADMAP;
    	}
    
    	/*
    	 * Check that the permissions on the VMA allow for the fault which
    	 * occurred.
    	 */
    	if (!(vma->vm_flags & vm_flags))
    		return VM_FAULT_BADACCESS;
    	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
    }
    
    static bool is_el0_instruction_abort(unsigned int esr)
    {
    	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
    }
    
    /*
     * Note: not valid for EL1 DC IVAC, but we never use that such that it
     * should fault. EL0 cannot issue DC IVAC (undef).
     */
    static bool is_write_abort(unsigned int esr)
    {
    	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
    }
    
    static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
    				   struct pt_regs *regs)
    {
    	const struct fault_info *inf;
    	struct mm_struct *mm = current->mm;
    	vm_fault_t fault, major = 0;
    	unsigned long vm_flags = VM_READ | VM_WRITE;
    	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
    
    	if (kprobe_page_fault(regs, esr))
    		return 0;
    
    	/*
    	 * If we're in an interrupt or have no user context, we must not take
    	 * the fault.
    	 */
    	if (faulthandler_disabled() || !mm)
    		goto no_context;
    
    	if (user_mode(regs))
    		mm_flags |= FAULT_FLAG_USER;
    
    	if (is_el0_instruction_abort(esr)) {
    		vm_flags = VM_EXEC;
    		mm_flags |= FAULT_FLAG_INSTRUCTION;
    	} else if (is_write_abort(esr)) {
    		vm_flags = VM_WRITE;
    		mm_flags |= FAULT_FLAG_WRITE;
    	}
    
    	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
    		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
    		if (regs->orig_addr_limit == KERNEL_DS)
    			die_kernel_fault("access to user memory with fs=KERNEL_DS",
    					 addr, esr, regs);
    
    		if (is_el1_instruction_abort(esr))
    			die_kernel_fault("execution of user memory",
    					 addr, esr, regs);
    
    		if (!search_exception_tables(regs->pc))
    			die_kernel_fault("access to user memory outside uaccess routines",
    					 addr, esr, regs);
    	}
    
    	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
    
    	/*
    	 * As per x86, we may deadlock here. However, since the kernel only
    	 * validly references user space from well defined areas of the code,
    	 * we can bug out early if this is from code which shouldn't.
    	 */
    	if (!down_read_trylock(&mm->mmap_sem)) {
    		if (!user_mode(regs) && !search_exception_tables(regs->pc))
    			goto no_context;
    retry:
    		down_read(&mm->mmap_sem);
    	} else {
    		/*
    		 * The above down_read_trylock() might have succeeded in which
    		 * case, we'll have missed the might_sleep() from down_read().
    		 */
    		might_sleep();
    #ifdef CONFIG_DEBUG_VM
    		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
    			up_read(&mm->mmap_sem);
    			goto no_context;
    		}
    #endif
    	}
    
    	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
    	major |= fault & VM_FAULT_MAJOR;
    
    	if (fault & VM_FAULT_RETRY) {
    		/*
    		 * If we need to retry but a fatal signal is pending,
    		 * handle the signal first. We do not need to release
    		 * the mmap_sem because it would already be released
    		 * in __lock_page_or_retry in mm/filemap.c.
    		 */
    		if (fatal_signal_pending(current)) {
    			if (!user_mode(regs))
    				goto no_context;
    			return 0;
    		}
    
    		/*
    		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
    		 * starvation.
    		 */
    		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
    			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
    			mm_flags |= FAULT_FLAG_TRIED;
    			goto retry;
    		}
    	}
    	up_read(&mm->mmap_sem);
    
    	/*
    	 * Handle the "normal" (no error) case first.
    	 */
    	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
    			      VM_FAULT_BADACCESS)))) {
    		/*
    		 * Major/minor page fault accounting is only done
    		 * once. If we go through a retry, it is extremely
    		 * likely that the page will be found in page cache at
    		 * that point.
    		 */
    		if (major) {
    			current->maj_flt++;
    			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
    				      addr);
    		} else {
    			current->min_flt++;
    			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
    				      addr);
    		}
    
    		return 0;
    	}
    
    	/*
    	 * If we are in kernel mode at this point, we have no context to
    	 * handle this fault with.
    	 */
    	if (!user_mode(regs))
    		goto no_context;
    
    	if (fault & VM_FAULT_OOM) {
    		/*
    		 * We ran out of memory, call the OOM killer, and return to
    		 * userspace (which will retry the fault, or kill us if we got
    		 * oom-killed).
    		 */
    		pagefault_out_of_memory();
    		return 0;
    	}
    
    	inf = esr_to_fault_info(esr);
    	set_thread_esr(addr, esr);
    	if (fault & VM_FAULT_SIGBUS) {
    		/*
    		 * We had some memory, but were unable to successfully fix up
    		 * this page fault.
    		 */
    		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
    				      inf->name);
    	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
    		unsigned int lsb;
    
    		lsb = PAGE_SHIFT;
    		if (fault & VM_FAULT_HWPOISON_LARGE)
    			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
    
    		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
    				       inf->name);
    	} else {
    		/*
    		 * Something tried to access memory that isn't in our memory
    		 * map.
    		 */
    		arm64_force_sig_fault(SIGSEGV,
    				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
    				      (void __user *)addr,
    				      inf->name);
    	}
    
    	return 0;
    
    no_context:
    	__do_kernel_fault(addr, esr, regs);
    	return 0;
    }
    
    static int __kprobes do_translation_fault(unsigned long addr,
    					  unsigned int esr,
    					  struct pt_regs *regs)
    {
    	if (is_ttbr0_addr(addr))
    		return do_page_fault(addr, esr, regs);
    
    	do_bad_area(addr, esr, regs);
    	return 0;
    }
    
    static int do_alignment_fault(unsigned long addr, unsigned int esr,
    			      struct pt_regs *regs)
    {
    	do_bad_area(addr, esr, regs);
    	return 0;
    }
    
    static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
    {
    	return 1; /* "fault" */
    }
    
    static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
    {
    	const struct fault_info *inf;
    	void __user *siaddr;
    
    	inf = esr_to_fault_info(esr);
    
    	/*
    	 * Return value ignored as we rely on signal merging.
    	 * Future patches will make this more robust.
    	 */
    	apei_claim_sea(regs);
    
    	if (esr & ESR_ELx_FnV)
    		siaddr = NULL;
    	else
    		siaddr  = (void __user *)addr;
    	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
    
    	return 0;
    }
    
    static const struct fault_info fault_info[] = {
    	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
    	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
    	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
    	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
    	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
    	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
    	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
    	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
    	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
    	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
    	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
    	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
    	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
    	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
    	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
    	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
    	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
    };
    
    asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
    					 struct pt_regs *regs)
    {
    	const struct fault_info *inf = esr_to_fault_info(esr);
    
    	if (!inf->fn(addr, esr, regs))
    		return;
    
    	if (!user_mode(regs)) {
    		pr_alert("Unhandled fault at 0x%016lx\n", addr);
    		mem_abort_decode(esr);
    		show_pte(addr);
    	}
    
    	arm64_notify_die(inf->name, regs,
    			 inf->sig, inf->code, (void __user *)addr, esr);
    }
    
    asmlinkage void __exception do_el0_irq_bp_hardening(void)
    {
    	/* PC has already been checked in entry.S */
    	arm64_apply_bp_hardening();
    }
    
    asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
    						   unsigned int esr,
    						   struct pt_regs *regs)
    {
    	/*
    	 * We've taken an instruction abort from userspace and not yet
    	 * re-enabled IRQs. If the address is a kernel address, apply
    	 * BP hardening prior to enabling IRQs and pre-emption.
    	 */
    	if (!is_ttbr0_addr(addr))
    		arm64_apply_bp_hardening();
    
    	local_daif_restore(DAIF_PROCCTX);
    	do_mem_abort(addr, esr, regs);
    }
    
    
    asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
    					   unsigned int esr,
    					   struct pt_regs *regs)
    {
    	if (user_mode(regs)) {
    		if (!is_ttbr0_addr(instruction_pointer(regs)))
    			arm64_apply_bp_hardening();
    		local_daif_restore(DAIF_PROCCTX);
    	}
    
    	arm64_notify_die("SP/PC alignment exception", regs,
    			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
    }
    
    int __init early_brk64(unsigned long addr, unsigned int esr,
    		       struct pt_regs *regs);
    
    /*
     * __refdata because early_brk64 is __init, but the reference to it is
     * clobbered at arch_initcall time.
     * See traps.c and debug-monitors.c:debug_traps_init().
     */
    static struct fault_info __refdata debug_fault_info[] = {
    	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
    	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
    	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
    	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
    	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
    	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
    	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
    	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
    };
    
    void __init hook_debug_fault_code(int nr,
    				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
    				  int sig, int code, const char *name)
    {
    	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
    
    	debug_fault_info[nr].fn		= fn;
    	debug_fault_info[nr].sig	= sig;
    	debug_fault_info[nr].code	= code;
    	debug_fault_info[nr].name	= name;
    }
    
    /*
     * In debug exception context, we explicitly disable preemption despite
     * having interrupts disabled.
     * This serves two purposes: it makes it much less likely that we would
     * accidentally schedule in exception context and it will force a warning
     * if we somehow manage to schedule by accident.
     */
    static void debug_exception_enter(struct pt_regs *regs)
    {
    	/*
    	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
    	 * already disabled to preserve the last enabled/disabled addresses.
    	 */
    	if (interrupts_enabled(regs))
    		trace_hardirqs_off();
    
    	if (user_mode(regs)) {
    		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
    	} else {
    		/*
    		 * We might have interrupted pretty much anything.  In
    		 * fact, if we're a debug exception, we can even interrupt
    		 * NMI processing. We don't want this code makes in_nmi()
    		 * to return true, but we need to notify RCU.
    		 */
    		rcu_nmi_enter();
    	}
    
    	preempt_disable();
    
    	/* This code is a bit fragile.  Test it. */
    	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
    }
    NOKPROBE_SYMBOL(debug_exception_enter);
    
    static void debug_exception_exit(struct pt_regs *regs)
    {
    	preempt_enable_no_resched();
    
    	if (!user_mode(regs))
    		rcu_nmi_exit();
    
    	if (interrupts_enabled(regs))
    		trace_hardirqs_on();
    }
    NOKPROBE_SYMBOL(debug_exception_exit);
    
    #ifdef CONFIG_ARM64_ERRATUM_1463225
    DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
    
    static int __exception
    cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
    {
    	if (user_mode(regs))
    		return 0;
    
    	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
    		return 0;
    
    	/*
    	 * We've taken a dummy step exception from the kernel to ensure
    	 * that interrupts are re-enabled on the syscall path. Return back
    	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
    	 * masked so that we can safely restore the mdscr and get on with
    	 * handling the syscall.
    	 */
    	regs->pstate |= PSR_D_BIT;
    	return 1;
    }
    #else
    static int __exception
    cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
    {
    	return 0;
    }
    #endif /* CONFIG_ARM64_ERRATUM_1463225 */
    
    asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
    					       unsigned int esr,
    					       struct pt_regs *regs)
    {
    	const struct fault_info *inf = esr_to_debug_fault_info(esr);
    	unsigned long pc = instruction_pointer(regs);
    
    	if (cortex_a76_erratum_1463225_debug_handler(regs))
    		return;
    
    	debug_exception_enter(regs);
    
    	if (user_mode(regs) && !is_ttbr0_addr(pc))
    		arm64_apply_bp_hardening();
    
    	if (inf->fn(addr_if_watchpoint, esr, regs)) {
    		arm64_notify_die(inf->name, regs,
    				 inf->sig, inf->code, (void __user *)pc, esr);
    	}
    
    	debug_exception_exit(regs);
    }
    NOKPROBE_SYMBOL(do_debug_exception);