Skip to content
Snippets Groups Projects
Select Git revision
  • df9c23095fc8652798c41dd860676d3dafb2f1dc
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-sdio-wp
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • seco_lf-6.6.52-2.2.1_e88-e83-init
  • seco_lf-6.6.52-2.2.1_e88-g101ean02
  • seco_lf-6.6.52-2.2.1_e88-sscg
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

time.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    time.c 32.01 KiB
    /*
     * Common time routines among all ppc machines.
     *
     * Written by Cort Dougan (cort@cs.nmt.edu) to merge
     * Paul Mackerras' version and mine for PReP and Pmac.
     * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
     * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
     *
     * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
     * to make clock more stable (2.4.0-test5). The only thing
     * that this code assumes is that the timebases have been synchronized
     * by firmware on SMP and are never stopped (never do sleep
     * on SMP then, nap and doze are OK).
     * 
     * Speeded up do_gettimeofday by getting rid of references to
     * xtime (which required locks for consistency). (mikejc@us.ibm.com)
     *
     * TODO (not necessarily in this file):
     * - improve precision and reproducibility of timebase frequency
     * measurement at boot time. (for iSeries, we calibrate the timebase
     * against the Titan chip's clock.)
     * - for astronomical applications: add a new function to get
     * non ambiguous timestamps even around leap seconds. This needs
     * a new timestamp format and a good name.
     *
     * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
     *             "A Kernel Model for Precision Timekeeping" by Dave Mills
     *
     *      This program is free software; you can redistribute it and/or
     *      modify it under the terms of the GNU General Public License
     *      as published by the Free Software Foundation; either version
     *      2 of the License, or (at your option) any later version.
     */
    
    #include <linux/errno.h>
    #include <linux/module.h>
    #include <linux/sched.h>
    #include <linux/kernel.h>
    #include <linux/param.h>
    #include <linux/string.h>
    #include <linux/mm.h>
    #include <linux/interrupt.h>
    #include <linux/timex.h>
    #include <linux/kernel_stat.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/profile.h>
    #include <linux/cpu.h>
    #include <linux/security.h>
    #include <linux/percpu.h>
    #include <linux/rtc.h>
    #include <linux/jiffies.h>
    #include <linux/posix-timers.h>
    #include <linux/irq.h>
    
    #include <asm/io.h>
    #include <asm/processor.h>
    #include <asm/nvram.h>
    #include <asm/cache.h>
    #include <asm/machdep.h>
    #include <asm/uaccess.h>
    #include <asm/time.h>
    #include <asm/prom.h>
    #include <asm/irq.h>
    #include <asm/div64.h>
    #include <asm/smp.h>
    #include <asm/vdso_datapage.h>
    #ifdef CONFIG_PPC64
    #include <asm/firmware.h>
    #endif
    #ifdef CONFIG_PPC_ISERIES
    #include <asm/iseries/it_lp_queue.h>
    #include <asm/iseries/hv_call_xm.h>
    #endif
    #include <asm/smp.h>
    
    /* keep track of when we need to update the rtc */
    time_t last_rtc_update;
    #ifdef CONFIG_PPC_ISERIES
    unsigned long iSeries_recal_titan = 0;
    unsigned long iSeries_recal_tb = 0; 
    static unsigned long first_settimeofday = 1;
    #endif
    
    /* The decrementer counts down by 128 every 128ns on a 601. */
    #define DECREMENTER_COUNT_601	(1000000000 / HZ)
    
    #define XSEC_PER_SEC (1024*1024)
    
    #ifdef CONFIG_PPC64
    #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
    #else
    /* compute ((xsec << 12) * max) >> 32 */
    #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
    #endif
    
    unsigned long tb_ticks_per_jiffy;
    unsigned long tb_ticks_per_usec = 100; /* sane default */
    EXPORT_SYMBOL(tb_ticks_per_usec);
    unsigned long tb_ticks_per_sec;
    EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
    u64 tb_to_xs;
    unsigned tb_to_us;
    
    #define TICKLEN_SCALE	TICK_LENGTH_SHIFT
    u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
    u64 ticklen_to_xs;	/* 0.64 fraction */
    
    /* If last_tick_len corresponds to about 1/HZ seconds, then
       last_tick_len << TICKLEN_SHIFT will be about 2^63. */
    #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
    
    DEFINE_SPINLOCK(rtc_lock);
    EXPORT_SYMBOL_GPL(rtc_lock);
    
    u64 tb_to_ns_scale;
    unsigned tb_to_ns_shift;
    
    struct gettimeofday_struct do_gtod;
    
    extern struct timezone sys_tz;
    static long timezone_offset;
    
    unsigned long ppc_proc_freq;
    unsigned long ppc_tb_freq;
    
    static u64 tb_last_jiffy __cacheline_aligned_in_smp;
    static DEFINE_PER_CPU(u64, last_jiffy);
    
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING
    /*
     * Factors for converting from cputime_t (timebase ticks) to
     * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
     * These are all stored as 0.64 fixed-point binary fractions.
     */
    u64 __cputime_jiffies_factor;
    EXPORT_SYMBOL(__cputime_jiffies_factor);
    u64 __cputime_msec_factor;
    EXPORT_SYMBOL(__cputime_msec_factor);
    u64 __cputime_sec_factor;
    EXPORT_SYMBOL(__cputime_sec_factor);
    u64 __cputime_clockt_factor;
    EXPORT_SYMBOL(__cputime_clockt_factor);
    
    static void calc_cputime_factors(void)
    {
    	struct div_result res;
    
    	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
    	__cputime_jiffies_factor = res.result_low;
    	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
    	__cputime_msec_factor = res.result_low;
    	div128_by_32(1, 0, tb_ticks_per_sec, &res);
    	__cputime_sec_factor = res.result_low;
    	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
    	__cputime_clockt_factor = res.result_low;
    }
    
    /*
     * Read the PURR on systems that have it, otherwise the timebase.
     */
    static u64 read_purr(void)
    {
    	if (cpu_has_feature(CPU_FTR_PURR))
    		return mfspr(SPRN_PURR);
    	return mftb();
    }
    
    /*
     * Account time for a transition between system, hard irq
     * or soft irq state.
     */
    void account_system_vtime(struct task_struct *tsk)
    {
    	u64 now, delta;
    	unsigned long flags;
    
    	local_irq_save(flags);
    	now = read_purr();
    	delta = now - get_paca()->startpurr;
    	get_paca()->startpurr = now;
    	if (!in_interrupt()) {
    		delta += get_paca()->system_time;
    		get_paca()->system_time = 0;
    	}
    	account_system_time(tsk, 0, delta);
    	local_irq_restore(flags);
    }
    
    /*
     * Transfer the user and system times accumulated in the paca
     * by the exception entry and exit code to the generic process
     * user and system time records.
     * Must be called with interrupts disabled.
     */
    void account_process_vtime(struct task_struct *tsk)
    {
    	cputime_t utime;
    
    	utime = get_paca()->user_time;
    	get_paca()->user_time = 0;
    	account_user_time(tsk, utime);
    }
    
    static void account_process_time(struct pt_regs *regs)
    {
    	int cpu = smp_processor_id();
    
    	account_process_vtime(current);
    	run_local_timers();
    	if (rcu_pending(cpu))
    		rcu_check_callbacks(cpu, user_mode(regs));
    	scheduler_tick();
     	run_posix_cpu_timers(current);
    }
    
    #ifdef CONFIG_PPC_SPLPAR
    /*
     * Stuff for accounting stolen time.
     */
    struct cpu_purr_data {
    	int	initialized;			/* thread is running */
    	u64	tb;			/* last TB value read */
    	u64	purr;			/* last PURR value read */
    	spinlock_t lock;
    };
    
    static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
    
    static void snapshot_tb_and_purr(void *data)
    {
    	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
    
    	p->tb = mftb();
    	p->purr = mfspr(SPRN_PURR);
    	wmb();
    	p->initialized = 1;
    }
    
    /*
     * Called during boot when all cpus have come up.
     */
    void snapshot_timebases(void)
    {
    	int cpu;
    
    	if (!cpu_has_feature(CPU_FTR_PURR))
    		return;
    	for_each_possible_cpu(cpu)
    		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
    	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
    }
    
    void calculate_steal_time(void)
    {
    	u64 tb, purr;
    	s64 stolen;
    	struct cpu_purr_data *pme;
    
    	if (!cpu_has_feature(CPU_FTR_PURR))
    		return;
    	pme = &per_cpu(cpu_purr_data, smp_processor_id());
    	if (!pme->initialized)
    		return;		/* this can happen in early boot */
    	spin_lock(&pme->lock);
    	tb = mftb();
    	purr = mfspr(SPRN_PURR);
    	stolen = (tb - pme->tb) - (purr - pme->purr);
    	if (stolen > 0)
    		account_steal_time(current, stolen);
    	pme->tb = tb;
    	pme->purr = purr;
    	spin_unlock(&pme->lock);
    }
    
    /*
     * Must be called before the cpu is added to the online map when
     * a cpu is being brought up at runtime.
     */
    static void snapshot_purr(void)
    {
    	struct cpu_purr_data *pme;
    	unsigned long flags;
    
    	if (!cpu_has_feature(CPU_FTR_PURR))
    		return;
    	pme = &per_cpu(cpu_purr_data, smp_processor_id());
    	spin_lock_irqsave(&pme->lock, flags);
    	pme->tb = mftb();
    	pme->purr = mfspr(SPRN_PURR);
    	pme->initialized = 1;
    	spin_unlock_irqrestore(&pme->lock, flags);
    }
    
    #endif /* CONFIG_PPC_SPLPAR */
    
    #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
    #define calc_cputime_factors()
    #define account_process_time(regs)	update_process_times(user_mode(regs))
    #define calculate_steal_time()		do { } while (0)
    #endif
    
    #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
    #define snapshot_purr()			do { } while (0)
    #endif
    
    /*
     * Called when a cpu comes up after the system has finished booting,
     * i.e. as a result of a hotplug cpu action.
     */
    void snapshot_timebase(void)
    {
    	__get_cpu_var(last_jiffy) = get_tb();
    	snapshot_purr();
    }
    
    void __delay(unsigned long loops)
    {
    	unsigned long start;
    	int diff;
    
    	if (__USE_RTC()) {
    		start = get_rtcl();
    		do {
    			/* the RTCL register wraps at 1000000000 */
    			diff = get_rtcl() - start;
    			if (diff < 0)
    				diff += 1000000000;
    		} while (diff < loops);
    	} else {
    		start = get_tbl();
    		while (get_tbl() - start < loops)
    			HMT_low();
    		HMT_medium();
    	}
    }
    EXPORT_SYMBOL(__delay);
    
    void udelay(unsigned long usecs)
    {
    	__delay(tb_ticks_per_usec * usecs);
    }
    EXPORT_SYMBOL(udelay);
    
    static __inline__ void timer_check_rtc(void)
    {
            /*
             * update the rtc when needed, this should be performed on the
             * right fraction of a second. Half or full second ?
             * Full second works on mk48t59 clocks, others need testing.
             * Note that this update is basically only used through 
             * the adjtimex system calls. Setting the HW clock in
             * any other way is a /dev/rtc and userland business.
             * This is still wrong by -0.5/+1.5 jiffies because of the
             * timer interrupt resolution and possible delay, but here we 
             * hit a quantization limit which can only be solved by higher
             * resolution timers and decoupling time management from timer
             * interrupts. This is also wrong on the clocks
             * which require being written at the half second boundary.
             * We should have an rtc call that only sets the minutes and
             * seconds like on Intel to avoid problems with non UTC clocks.
             */
            if (ppc_md.set_rtc_time && ntp_synced() &&
    	    xtime.tv_sec - last_rtc_update >= 659 &&
    	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
    		struct rtc_time tm;
    		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
    		tm.tm_year -= 1900;
    		tm.tm_mon -= 1;
    		if (ppc_md.set_rtc_time(&tm) == 0)
    			last_rtc_update = xtime.tv_sec + 1;
    		else
    			/* Try again one minute later */
    			last_rtc_update += 60;
            }
    }
    
    /*
     * This version of gettimeofday has microsecond resolution.
     */
    static inline void __do_gettimeofday(struct timeval *tv)
    {
    	unsigned long sec, usec;
    	u64 tb_ticks, xsec;
    	struct gettimeofday_vars *temp_varp;
    	u64 temp_tb_to_xs, temp_stamp_xsec;
    
    	/*
    	 * These calculations are faster (gets rid of divides)
    	 * if done in units of 1/2^20 rather than microseconds.
    	 * The conversion to microseconds at the end is done
    	 * without a divide (and in fact, without a multiply)
    	 */
    	temp_varp = do_gtod.varp;
    
    	/* Sampling the time base must be done after loading
    	 * do_gtod.varp in order to avoid racing with update_gtod.
    	 */
    	data_barrier(temp_varp);
    	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
    	temp_tb_to_xs = temp_varp->tb_to_xs;
    	temp_stamp_xsec = temp_varp->stamp_xsec;
    	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
    	sec = xsec / XSEC_PER_SEC;
    	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
    	usec = SCALE_XSEC(usec, 1000000);
    
    	tv->tv_sec = sec;
    	tv->tv_usec = usec;
    }
    
    void do_gettimeofday(struct timeval *tv)
    {
    	if (__USE_RTC()) {
    		/* do this the old way */
    		unsigned long flags, seq;
    		unsigned int sec, nsec, usec;
    
    		do {
    			seq = read_seqbegin_irqsave(&xtime_lock, flags);
    			sec = xtime.tv_sec;
    			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
    		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
    		usec = nsec / 1000;
    		while (usec >= 1000000) {
    			usec -= 1000000;
    			++sec;
    		}
    		tv->tv_sec = sec;
    		tv->tv_usec = usec;
    		return;
    	}
    	__do_gettimeofday(tv);
    }
    
    EXPORT_SYMBOL(do_gettimeofday);
    
    /*
     * There are two copies of tb_to_xs and stamp_xsec so that no
     * lock is needed to access and use these values in
     * do_gettimeofday.  We alternate the copies and as long as a
     * reasonable time elapses between changes, there will never
     * be inconsistent values.  ntpd has a minimum of one minute
     * between updates.
     */
    static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
    			       u64 new_tb_to_xs)
    {
    	unsigned temp_idx;
    	struct gettimeofday_vars *temp_varp;
    
    	temp_idx = (do_gtod.var_idx == 0);
    	temp_varp = &do_gtod.vars[temp_idx];
    
    	temp_varp->tb_to_xs = new_tb_to_xs;
    	temp_varp->tb_orig_stamp = new_tb_stamp;
    	temp_varp->stamp_xsec = new_stamp_xsec;
    	smp_mb();
    	do_gtod.varp = temp_varp;
    	do_gtod.var_idx = temp_idx;
    
    	/*
    	 * tb_update_count is used to allow the userspace gettimeofday code
    	 * to assure itself that it sees a consistent view of the tb_to_xs and
    	 * stamp_xsec variables.  It reads the tb_update_count, then reads
    	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
    	 * the two values of tb_update_count match and are even then the
    	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
    	 * loops back and reads them again until this criteria is met.
    	 * We expect the caller to have done the first increment of
    	 * vdso_data->tb_update_count already.
    	 */
    	vdso_data->tb_orig_stamp = new_tb_stamp;
    	vdso_data->stamp_xsec = new_stamp_xsec;
    	vdso_data->tb_to_xs = new_tb_to_xs;
    	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
    	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
    	smp_wmb();
    	++(vdso_data->tb_update_count);
    }
    
    /*
     * When the timebase - tb_orig_stamp gets too big, we do a manipulation
     * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
     * difference tb - tb_orig_stamp small enough to always fit inside a
     * 32 bits number. This is a requirement of our fast 32 bits userland
     * implementation in the vdso. If we "miss" a call to this function
     * (interrupt latency, CPU locked in a spinlock, ...) and we end up
     * with a too big difference, then the vdso will fallback to calling
     * the syscall
     */
    static __inline__ void timer_recalc_offset(u64 cur_tb)
    {
    	unsigned long offset;
    	u64 new_stamp_xsec;
    	u64 tlen, t2x;
    	u64 tb, xsec_old, xsec_new;
    	struct gettimeofday_vars *varp;
    
    	if (__USE_RTC())
    		return;
    	tlen = current_tick_length();
    	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
    	if (tlen == last_tick_len && offset < 0x80000000u)
    		return;
    	if (tlen != last_tick_len) {
    		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
    		last_tick_len = tlen;
    	} else
    		t2x = do_gtod.varp->tb_to_xs;
    	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
    	do_div(new_stamp_xsec, 1000000000);
    	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
    
    	++vdso_data->tb_update_count;
    	smp_mb();
    
    	/*
    	 * Make sure time doesn't go backwards for userspace gettimeofday.
    	 */
    	tb = get_tb();
    	varp = do_gtod.varp;
    	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
    		+ varp->stamp_xsec;
    	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
    	if (xsec_new < xsec_old)
    		new_stamp_xsec += xsec_old - xsec_new;
    
    	update_gtod(cur_tb, new_stamp_xsec, t2x);
    }
    
    #ifdef CONFIG_SMP
    unsigned long profile_pc(struct pt_regs *regs)
    {
    	unsigned long pc = instruction_pointer(regs);
    
    	if (in_lock_functions(pc))
    		return regs->link;
    
    	return pc;
    }
    EXPORT_SYMBOL(profile_pc);
    #endif
    
    #ifdef CONFIG_PPC_ISERIES
    
    /* 
     * This function recalibrates the timebase based on the 49-bit time-of-day
     * value in the Titan chip.  The Titan is much more accurate than the value
     * returned by the service processor for the timebase frequency.  
     */
    
    static void iSeries_tb_recal(void)
    {
    	struct div_result divres;
    	unsigned long titan, tb;
    	tb = get_tb();
    	titan = HvCallXm_loadTod();
    	if ( iSeries_recal_titan ) {
    		unsigned long tb_ticks = tb - iSeries_recal_tb;
    		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
    		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
    		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
    		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
    		char sign = '+';		
    		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
    		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
    
    		if ( tick_diff < 0 ) {
    			tick_diff = -tick_diff;
    			sign = '-';
    		}
    		if ( tick_diff ) {
    			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
    				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
    						new_tb_ticks_per_jiffy, sign, tick_diff );
    				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
    				tb_ticks_per_sec   = new_tb_ticks_per_sec;
    				calc_cputime_factors();
    				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
    				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
    				tb_to_xs = divres.result_low;
    				do_gtod.varp->tb_to_xs = tb_to_xs;
    				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
    				vdso_data->tb_to_xs = tb_to_xs;
    			}
    			else {
    				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
    					"                   new tb_ticks_per_jiffy = %lu\n"
    					"                   old tb_ticks_per_jiffy = %lu\n",
    					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
    			}
    		}
    	}
    	iSeries_recal_titan = titan;
    	iSeries_recal_tb = tb;
    }
    #endif
    
    /*
     * For iSeries shared processors, we have to let the hypervisor
     * set the hardware decrementer.  We set a virtual decrementer
     * in the lppaca and call the hypervisor if the virtual
     * decrementer is less than the current value in the hardware
     * decrementer. (almost always the new decrementer value will
     * be greater than the current hardware decementer so the hypervisor
     * call will not be needed)
     */
    
    /*
     * timer_interrupt - gets called when the decrementer overflows,
     * with interrupts disabled.
     */
    void timer_interrupt(struct pt_regs * regs)
    {
    	struct pt_regs *old_regs;
    	int next_dec;
    	int cpu = smp_processor_id();
    	unsigned long ticks;
    	u64 tb_next_jiffy;
    
    #ifdef CONFIG_PPC32
    	if (atomic_read(&ppc_n_lost_interrupts) != 0)
    		do_IRQ(regs);
    #endif
    
    	old_regs = set_irq_regs(regs);
    	irq_enter();
    
    	profile_tick(CPU_PROFILING);
    	calculate_steal_time();
    
    #ifdef CONFIG_PPC_ISERIES
    	get_lppaca()->int_dword.fields.decr_int = 0;
    #endif
    
    	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
    	       >= tb_ticks_per_jiffy) {
    		/* Update last_jiffy */
    		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
    		/* Handle RTCL overflow on 601 */
    		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
    			per_cpu(last_jiffy, cpu) -= 1000000000;
    
    		/*
    		 * We cannot disable the decrementer, so in the period
    		 * between this cpu's being marked offline in cpu_online_map
    		 * and calling stop-self, it is taking timer interrupts.
    		 * Avoid calling into the scheduler rebalancing code if this
    		 * is the case.
    		 */
    		if (!cpu_is_offline(cpu))
    			account_process_time(regs);
    
    		/*
    		 * No need to check whether cpu is offline here; boot_cpuid
    		 * should have been fixed up by now.
    		 */
    		if (cpu != boot_cpuid)
    			continue;
    
    		write_seqlock(&xtime_lock);
    		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
    		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
    			tb_last_jiffy = tb_next_jiffy;
    			do_timer(1);
    			timer_recalc_offset(tb_last_jiffy);
    			timer_check_rtc();
    		}
    		write_sequnlock(&xtime_lock);
    	}
    	
    	next_dec = tb_ticks_per_jiffy - ticks;
    	set_dec(next_dec);
    
    #ifdef CONFIG_PPC_ISERIES
    	if (hvlpevent_is_pending())
    		process_hvlpevents();
    #endif
    
    #ifdef CONFIG_PPC64
    	/* collect purr register values often, for accurate calculations */
    	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
    		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
    		cu->current_tb = mfspr(SPRN_PURR);
    	}
    #endif
    
    	irq_exit();
    	set_irq_regs(old_regs);
    }
    
    void wakeup_decrementer(void)
    {
    	unsigned long ticks;
    
    	/*
    	 * The timebase gets saved on sleep and restored on wakeup,
    	 * so all we need to do is to reset the decrementer.
    	 */
    	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
    	if (ticks < tb_ticks_per_jiffy)
    		ticks = tb_ticks_per_jiffy - ticks;
    	else
    		ticks = 1;
    	set_dec(ticks);
    }
    
    #ifdef CONFIG_SMP
    void __init smp_space_timers(unsigned int max_cpus)
    {
    	int i;
    	unsigned long half = tb_ticks_per_jiffy / 2;
    	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
    	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
    
    	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
    	previous_tb -= tb_ticks_per_jiffy;
    	/*
    	 * The stolen time calculation for POWER5 shared-processor LPAR
    	 * systems works better if the two threads' timebase interrupts
    	 * are staggered by half a jiffy with respect to each other.
    	 */
    	for_each_possible_cpu(i) {
    		if (i == boot_cpuid)
    			continue;
    		if (i == (boot_cpuid ^ 1))
    			per_cpu(last_jiffy, i) =
    				per_cpu(last_jiffy, boot_cpuid) - half;
    		else if (i & 1)
    			per_cpu(last_jiffy, i) =
    				per_cpu(last_jiffy, i ^ 1) + half;
    		else {
    			previous_tb += offset;
    			per_cpu(last_jiffy, i) = previous_tb;
    		}
    	}
    }
    #endif
    
    /*
     * Scheduler clock - returns current time in nanosec units.
     *
     * Note: mulhdu(a, b) (multiply high double unsigned) returns
     * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
     * are 64-bit unsigned numbers.
     */
    unsigned long long sched_clock(void)
    {
    	if (__USE_RTC())
    		return get_rtc();
    	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
    }
    
    int do_settimeofday(struct timespec *tv)
    {
    	time_t wtm_sec, new_sec = tv->tv_sec;
    	long wtm_nsec, new_nsec = tv->tv_nsec;
    	unsigned long flags;
    	u64 new_xsec;
    	unsigned long tb_delta;
    
    	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
    		return -EINVAL;
    
    	write_seqlock_irqsave(&xtime_lock, flags);
    
    	/*
    	 * Updating the RTC is not the job of this code. If the time is
    	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
    	 * is cleared.  Tools like clock/hwclock either copy the RTC
    	 * to the system time, in which case there is no point in writing
    	 * to the RTC again, or write to the RTC but then they don't call
    	 * settimeofday to perform this operation.
    	 */
    #ifdef CONFIG_PPC_ISERIES
    	if (first_settimeofday) {
    		iSeries_tb_recal();
    		first_settimeofday = 0;
    	}
    #endif
    
    	/* Make userspace gettimeofday spin until we're done. */
    	++vdso_data->tb_update_count;
    	smp_mb();
    
    	/*
    	 * Subtract off the number of nanoseconds since the
    	 * beginning of the last tick.
    	 */
    	tb_delta = tb_ticks_since(tb_last_jiffy);
    	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
    	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
    
    	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
    	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
    
     	set_normalized_timespec(&xtime, new_sec, new_nsec);
    	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
    
    	/* In case of a large backwards jump in time with NTP, we want the 
    	 * clock to be updated as soon as the PLL is again in lock.
    	 */
    	last_rtc_update = new_sec - 658;
    
    	ntp_clear();
    
    	new_xsec = xtime.tv_nsec;
    	if (new_xsec != 0) {
    		new_xsec *= XSEC_PER_SEC;
    		do_div(new_xsec, NSEC_PER_SEC);
    	}
    	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
    	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
    
    	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
    	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
    
    	write_sequnlock_irqrestore(&xtime_lock, flags);
    	clock_was_set();
    	return 0;
    }
    
    EXPORT_SYMBOL(do_settimeofday);
    
    static int __init get_freq(char *name, int cells, unsigned long *val)
    {
    	struct device_node *cpu;
    	const unsigned int *fp;
    	int found = 0;
    
    	/* The cpu node should have timebase and clock frequency properties */
    	cpu = of_find_node_by_type(NULL, "cpu");
    
    	if (cpu) {
    		fp = get_property(cpu, name, NULL);
    		if (fp) {
    			found = 1;
    			*val = of_read_ulong(fp, cells);
    		}
    
    		of_node_put(cpu);
    	}
    
    	return found;
    }
    
    void __init generic_calibrate_decr(void)
    {
    	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
    
    	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
    	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
    
    		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
    				"(not found)\n");
    	}
    
    	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
    
    	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
    	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
    
    		printk(KERN_ERR "WARNING: Estimating processor frequency "
    				"(not found)\n");
    	}
    
    #ifdef CONFIG_BOOKE
    	/* Set the time base to zero */
    	mtspr(SPRN_TBWL, 0);
    	mtspr(SPRN_TBWU, 0);
    
    	/* Clear any pending timer interrupts */
    	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
    
    	/* Enable decrementer interrupt */
    	mtspr(SPRN_TCR, TCR_DIE);
    #endif
    }
    
    unsigned long get_boot_time(void)
    {
    	struct rtc_time tm;
    
    	if (ppc_md.get_boot_time)
    		return ppc_md.get_boot_time();
    	if (!ppc_md.get_rtc_time)
    		return 0;
    	ppc_md.get_rtc_time(&tm);
    	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
    		      tm.tm_hour, tm.tm_min, tm.tm_sec);
    }
    
    /* This function is only called on the boot processor */
    void __init time_init(void)
    {
    	unsigned long flags;
    	unsigned long tm = 0;
    	struct div_result res;
    	u64 scale, x;
    	unsigned shift;
    
            if (ppc_md.time_init != NULL)
                    timezone_offset = ppc_md.time_init();
    
    	if (__USE_RTC()) {
    		/* 601 processor: dec counts down by 128 every 128ns */
    		ppc_tb_freq = 1000000000;
    		tb_last_jiffy = get_rtcl();
    	} else {
    		/* Normal PowerPC with timebase register */
    		ppc_md.calibrate_decr();
    		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
    		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
    		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
    		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
    		tb_last_jiffy = get_tb();
    	}
    
    	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
    	tb_ticks_per_sec = ppc_tb_freq;
    	tb_ticks_per_usec = ppc_tb_freq / 1000000;
    	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
    	calc_cputime_factors();
    
    	/*
    	 * Calculate the length of each tick in ns.  It will not be
    	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
    	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
    	 * rounded up.
    	 */
    	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
    	do_div(x, ppc_tb_freq);
    	tick_nsec = x;
    	last_tick_len = x << TICKLEN_SCALE;
    
    	/*
    	 * Compute ticklen_to_xs, which is a factor which gets multiplied
    	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
    	 * It is computed as:
    	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
    	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
    	 * which turns out to be N = 51 - SHIFT_HZ.
    	 * This gives the result as a 0.64 fixed-point fraction.
    	 * That value is reduced by an offset amounting to 1 xsec per
    	 * 2^31 timebase ticks to avoid problems with time going backwards
    	 * by 1 xsec when we do timer_recalc_offset due to losing the
    	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
    	 * since there are 2^20 xsec in a second.
    	 */
    	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
    		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
    	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
    	ticklen_to_xs = res.result_low;
    
    	/* Compute tb_to_xs from tick_nsec */
    	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
    
    	/*
    	 * Compute scale factor for sched_clock.
    	 * The calibrate_decr() function has set tb_ticks_per_sec,
    	 * which is the timebase frequency.
    	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
    	 * the 128-bit result as a 64.64 fixed-point number.
    	 * We then shift that number right until it is less than 1.0,
    	 * giving us the scale factor and shift count to use in
    	 * sched_clock().
    	 */
    	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
    	scale = res.result_low;
    	for (shift = 0; res.result_high != 0; ++shift) {
    		scale = (scale >> 1) | (res.result_high << 63);
    		res.result_high >>= 1;
    	}
    	tb_to_ns_scale = scale;
    	tb_to_ns_shift = shift;
    
    	tm = get_boot_time();
    
    	write_seqlock_irqsave(&xtime_lock, flags);
    
    	/* If platform provided a timezone (pmac), we correct the time */
            if (timezone_offset) {
    		sys_tz.tz_minuteswest = -timezone_offset / 60;
    		sys_tz.tz_dsttime = 0;
    		tm -= timezone_offset;
            }
    
    	xtime.tv_sec = tm;
    	xtime.tv_nsec = 0;
    	do_gtod.varp = &do_gtod.vars[0];
    	do_gtod.var_idx = 0;
    	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
    	__get_cpu_var(last_jiffy) = tb_last_jiffy;
    	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
    	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
    	do_gtod.varp->tb_to_xs = tb_to_xs;
    	do_gtod.tb_to_us = tb_to_us;
    
    	vdso_data->tb_orig_stamp = tb_last_jiffy;
    	vdso_data->tb_update_count = 0;
    	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
    	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
    	vdso_data->tb_to_xs = tb_to_xs;
    
    	time_freq = 0;
    
    	last_rtc_update = xtime.tv_sec;
    	set_normalized_timespec(&wall_to_monotonic,
    	                        -xtime.tv_sec, -xtime.tv_nsec);
    	write_sequnlock_irqrestore(&xtime_lock, flags);
    
    	/* Not exact, but the timer interrupt takes care of this */
    	set_dec(tb_ticks_per_jiffy);
    }
    
    
    #define FEBRUARY	2
    #define	STARTOFTIME	1970
    #define SECDAY		86400L
    #define SECYR		(SECDAY * 365)
    #define	leapyear(year)		((year) % 4 == 0 && \
    				 ((year) % 100 != 0 || (year) % 400 == 0))
    #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
    #define	days_in_month(a) 	(month_days[(a) - 1])
    
    static int month_days[12] = {
    	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    };
    
    /*
     * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
     */
    void GregorianDay(struct rtc_time * tm)
    {
    	int leapsToDate;
    	int lastYear;
    	int day;
    	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
    
    	lastYear = tm->tm_year - 1;
    
    	/*
    	 * Number of leap corrections to apply up to end of last year
    	 */
    	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
    
    	/*
    	 * This year is a leap year if it is divisible by 4 except when it is
    	 * divisible by 100 unless it is divisible by 400
    	 *
    	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
    	 */
    	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
    
    	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
    		   tm->tm_mday;
    
    	tm->tm_wday = day % 7;
    }
    
    void to_tm(int tim, struct rtc_time * tm)
    {
    	register int    i;
    	register long   hms, day;
    
    	day = tim / SECDAY;
    	hms = tim % SECDAY;
    
    	/* Hours, minutes, seconds are easy */
    	tm->tm_hour = hms / 3600;
    	tm->tm_min = (hms % 3600) / 60;
    	tm->tm_sec = (hms % 3600) % 60;
    
    	/* Number of years in days */
    	for (i = STARTOFTIME; day >= days_in_year(i); i++)
    		day -= days_in_year(i);
    	tm->tm_year = i;
    
    	/* Number of months in days left */
    	if (leapyear(tm->tm_year))
    		days_in_month(FEBRUARY) = 29;
    	for (i = 1; day >= days_in_month(i); i++)
    		day -= days_in_month(i);
    	days_in_month(FEBRUARY) = 28;
    	tm->tm_mon = i;
    
    	/* Days are what is left over (+1) from all that. */
    	tm->tm_mday = day + 1;
    
    	/*
    	 * Determine the day of week
    	 */
    	GregorianDay(tm);
    }
    
    /* Auxiliary function to compute scaling factors */
    /* Actually the choice of a timebase running at 1/4 the of the bus
     * frequency giving resolution of a few tens of nanoseconds is quite nice.
     * It makes this computation very precise (27-28 bits typically) which
     * is optimistic considering the stability of most processor clock
     * oscillators and the precision with which the timebase frequency
     * is measured but does not harm.
     */
    unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
    {
            unsigned mlt=0, tmp, err;
            /* No concern for performance, it's done once: use a stupid
             * but safe and compact method to find the multiplier.
             */
      
            for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
                    if (mulhwu(inscale, mlt|tmp) < outscale)
    			mlt |= tmp;
            }
      
            /* We might still be off by 1 for the best approximation.
             * A side effect of this is that if outscale is too large
             * the returned value will be zero.
             * Many corner cases have been checked and seem to work,
             * some might have been forgotten in the test however.
             */
      
            err = inscale * (mlt+1);
            if (err <= inscale/2)
    		mlt++;
            return mlt;
    }
    
    /*
     * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
     * result.
     */
    void div128_by_32(u64 dividend_high, u64 dividend_low,
    		  unsigned divisor, struct div_result *dr)
    {
    	unsigned long a, b, c, d;
    	unsigned long w, x, y, z;
    	u64 ra, rb, rc;
    
    	a = dividend_high >> 32;
    	b = dividend_high & 0xffffffff;
    	c = dividend_low >> 32;
    	d = dividend_low & 0xffffffff;
    
    	w = a / divisor;
    	ra = ((u64)(a - (w * divisor)) << 32) + b;
    
    	rb = ((u64) do_div(ra, divisor) << 32) + c;
    	x = ra;
    
    	rc = ((u64) do_div(rb, divisor) << 32) + d;
    	y = rb;
    
    	do_div(rc, divisor);
    	z = rc;
    
    	dr->result_high = ((u64)w << 32) + x;
    	dr->result_low  = ((u64)y << 32) + z;
    
    }