Skip to content
Snippets Groups Projects
Select Git revision
  • c74a3bdd9b529d924d1abf986079b783dd105ace
  • seco_lf-6.6.52-2.2.1 default protected
  • MODV-209-e-39-add-gpio-line-names-in-kernel-device-tree
  • niccolor/e88-lt9611uxc-dsi-complete-support
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-nxpbtuart
  • chka-modv-206-poc
  • seco_lf-6.6.52-2.2.1-rtl8211f_led
  • seco_lf-5.10.y protected
  • seco_lf_v2024.04_6.6.52_2.2.x_e39_spidev-overlay
  • seco_lf_v2024.04_6.6.52_2.2.x_e39_sdcard-card-detect-gpio-mode
  • integrate/gitlab-ci/cleaos-833-add-cnfluence-labels-into-config/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-448-bitbake-logs-in-failed-job/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-448-bitbake-logs-in-failed-job/into/seco_lf-5.10.y
  • chka-seco_lf-6.6.52-2.2.1-fix-eth-led-modv-198
  • didi/spi-cs
  • seco_lf-6.6.23-2.0.0_e39-e83-temperature-sensor
  • seco_lf-6.6.23-2.0.0_e39-e83-status-led
  • seco_lf-6.6.23-2.0.0_e39-e83-lvds-7inch-powersequence
  • chka-fix-eth-led-modv-198
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

super.c

Blame
  • user avatar
    Goldwyn Rodrigues authored and Linus Torvalds committed
    This is an effort of removing ocfs2_controld.pcmk and getting ocfs2 DLM
    handling up to the times with respect to DLM (>=4.0.1) and corosync
    (2.3.x).  AFAIK, cman also is being phased out for a unified corosync
    cluster stack.
    
    fs/dlm performs all the functions with respect to fencing and node
    management and provides the API's to do so for ocfs2.  For all future
    references, DLM stands for fs/dlm code.
    
    The advantages are:
     + No need to run an additional userspace daemon (ocfs2_controld)
     + No controld device handling and controld protocol
     + Shifting responsibilities of node management to DLM layer
    
    For backward compatibility, we are keeping the controld handling code.
    Once enough time has passed we can remove a significant portion of the
    code.  This was tested by using the kernel with changes on older
    unmodified tools.  The kernel used ocfs2_controld as expected, and
    displayed the appropriate warning message.
    
    This feature requires modification in the userspace ocfs2-tools.  The
    changes can be found at: https://github.com/goldwynr/ocfs2-tools
    
     branch:
    nocontrold Currently, not many checks are present in the userspace code,
    but that would change soon.
    
    This patch (of 6):
    
    Add clustername to cluster connection.
    
    Signed-off-by: default avatarGoldwyn Rodrigues <rgoldwyn@suse.com>
    Reviewed-by: default avatarMark Fasheh <mfasheh@suse.de>
    Cc: Joel Becker <jlbec@evilplan.org>
    Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
    Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
    c74a3bdd
    History
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    super.c 69.19 KiB
    /* -*- mode: c; c-basic-offset: 8; -*-
     * vim: noexpandtab sw=8 ts=8 sts=0:
     *
     * super.c
     *
     * load/unload driver, mount/dismount volumes
     *
     * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License as published by the Free Software Foundation; either
     * version 2 of the License, or (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/module.h>
    #include <linux/fs.h>
    #include <linux/types.h>
    #include <linux/slab.h>
    #include <linux/highmem.h>
    #include <linux/init.h>
    #include <linux/random.h>
    #include <linux/statfs.h>
    #include <linux/moduleparam.h>
    #include <linux/blkdev.h>
    #include <linux/socket.h>
    #include <linux/inet.h>
    #include <linux/parser.h>
    #include <linux/crc32.h>
    #include <linux/debugfs.h>
    #include <linux/mount.h>
    #include <linux/seq_file.h>
    #include <linux/quotaops.h>
    #include <linux/cleancache.h>
    
    #define CREATE_TRACE_POINTS
    #include "ocfs2_trace.h"
    
    #include <cluster/masklog.h>
    
    #include "ocfs2.h"
    
    /* this should be the only file to include a version 1 header */
    #include "ocfs1_fs_compat.h"
    
    #include "alloc.h"
    #include "aops.h"
    #include "blockcheck.h"
    #include "dlmglue.h"
    #include "export.h"
    #include "extent_map.h"
    #include "heartbeat.h"
    #include "inode.h"
    #include "journal.h"
    #include "localalloc.h"
    #include "namei.h"
    #include "slot_map.h"
    #include "super.h"
    #include "sysfile.h"
    #include "uptodate.h"
    #include "xattr.h"
    #include "quota.h"
    #include "refcounttree.h"
    #include "suballoc.h"
    
    #include "buffer_head_io.h"
    
    static struct kmem_cache *ocfs2_inode_cachep = NULL;
    struct kmem_cache *ocfs2_dquot_cachep;
    struct kmem_cache *ocfs2_qf_chunk_cachep;
    
    /* OCFS2 needs to schedule several different types of work which
     * require cluster locking, disk I/O, recovery waits, etc. Since these
     * types of work tend to be heavy we avoid using the kernel events
     * workqueue and schedule on our own. */
    struct workqueue_struct *ocfs2_wq = NULL;
    
    static struct dentry *ocfs2_debugfs_root = NULL;
    
    MODULE_AUTHOR("Oracle");
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("OCFS2 cluster file system");
    
    struct mount_options
    {
    	unsigned long	commit_interval;
    	unsigned long	mount_opt;
    	unsigned int	atime_quantum;
    	signed short	slot;
    	int		localalloc_opt;
    	unsigned int	resv_level;
    	int		dir_resv_level;
    	char		cluster_stack[OCFS2_STACK_LABEL_LEN + 1];
    };
    
    static int ocfs2_parse_options(struct super_block *sb, char *options,
    			       struct mount_options *mopt,
    			       int is_remount);
    static int ocfs2_check_set_options(struct super_block *sb,
    				   struct mount_options *options);
    static int ocfs2_show_options(struct seq_file *s, struct dentry *root);
    static void ocfs2_put_super(struct super_block *sb);
    static int ocfs2_mount_volume(struct super_block *sb);
    static int ocfs2_remount(struct super_block *sb, int *flags, char *data);
    static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err);
    static int ocfs2_initialize_mem_caches(void);
    static void ocfs2_free_mem_caches(void);
    static void ocfs2_delete_osb(struct ocfs2_super *osb);
    
    static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf);
    
    static int ocfs2_sync_fs(struct super_block *sb, int wait);
    
    static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb);
    static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb);
    static void ocfs2_release_system_inodes(struct ocfs2_super *osb);
    static int ocfs2_check_volume(struct ocfs2_super *osb);
    static int ocfs2_verify_volume(struct ocfs2_dinode *di,
    			       struct buffer_head *bh,
    			       u32 sectsize,
    			       struct ocfs2_blockcheck_stats *stats);
    static int ocfs2_initialize_super(struct super_block *sb,
    				  struct buffer_head *bh,
    				  int sector_size,
    				  struct ocfs2_blockcheck_stats *stats);
    static int ocfs2_get_sector(struct super_block *sb,
    			    struct buffer_head **bh,
    			    int block,
    			    int sect_size);
    static struct inode *ocfs2_alloc_inode(struct super_block *sb);
    static void ocfs2_destroy_inode(struct inode *inode);
    static int ocfs2_susp_quotas(struct ocfs2_super *osb, int unsuspend);
    static int ocfs2_enable_quotas(struct ocfs2_super *osb);
    static void ocfs2_disable_quotas(struct ocfs2_super *osb);
    
    static const struct super_operations ocfs2_sops = {
    	.statfs		= ocfs2_statfs,
    	.alloc_inode	= ocfs2_alloc_inode,
    	.destroy_inode	= ocfs2_destroy_inode,
    	.drop_inode	= ocfs2_drop_inode,
    	.evict_inode	= ocfs2_evict_inode,
    	.sync_fs	= ocfs2_sync_fs,
    	.put_super	= ocfs2_put_super,
    	.remount_fs	= ocfs2_remount,
    	.show_options   = ocfs2_show_options,
    	.quota_read	= ocfs2_quota_read,
    	.quota_write	= ocfs2_quota_write,
    };
    
    enum {
    	Opt_barrier,
    	Opt_err_panic,
    	Opt_err_ro,
    	Opt_intr,
    	Opt_nointr,
    	Opt_hb_none,
    	Opt_hb_local,
    	Opt_hb_global,
    	Opt_data_ordered,
    	Opt_data_writeback,
    	Opt_atime_quantum,
    	Opt_slot,
    	Opt_commit,
    	Opt_localalloc,
    	Opt_localflocks,
    	Opt_stack,
    	Opt_user_xattr,
    	Opt_nouser_xattr,
    	Opt_inode64,
    	Opt_acl,
    	Opt_noacl,
    	Opt_usrquota,
    	Opt_grpquota,
    	Opt_coherency_buffered,
    	Opt_coherency_full,
    	Opt_resv_level,
    	Opt_dir_resv_level,
    	Opt_err,
    };
    
    static const match_table_t tokens = {
    	{Opt_barrier, "barrier=%u"},
    	{Opt_err_panic, "errors=panic"},
    	{Opt_err_ro, "errors=remount-ro"},
    	{Opt_intr, "intr"},
    	{Opt_nointr, "nointr"},
    	{Opt_hb_none, OCFS2_HB_NONE},
    	{Opt_hb_local, OCFS2_HB_LOCAL},
    	{Opt_hb_global, OCFS2_HB_GLOBAL},
    	{Opt_data_ordered, "data=ordered"},
    	{Opt_data_writeback, "data=writeback"},
    	{Opt_atime_quantum, "atime_quantum=%u"},
    	{Opt_slot, "preferred_slot=%u"},
    	{Opt_commit, "commit=%u"},
    	{Opt_localalloc, "localalloc=%d"},
    	{Opt_localflocks, "localflocks"},
    	{Opt_stack, "cluster_stack=%s"},
    	{Opt_user_xattr, "user_xattr"},
    	{Opt_nouser_xattr, "nouser_xattr"},
    	{Opt_inode64, "inode64"},
    	{Opt_acl, "acl"},
    	{Opt_noacl, "noacl"},
    	{Opt_usrquota, "usrquota"},
    	{Opt_grpquota, "grpquota"},
    	{Opt_coherency_buffered, "coherency=buffered"},
    	{Opt_coherency_full, "coherency=full"},
    	{Opt_resv_level, "resv_level=%u"},
    	{Opt_dir_resv_level, "dir_resv_level=%u"},
    	{Opt_err, NULL}
    };
    
    #ifdef CONFIG_DEBUG_FS
    static int ocfs2_osb_dump(struct ocfs2_super *osb, char *buf, int len)
    {
    	struct ocfs2_cluster_connection *cconn = osb->cconn;
    	struct ocfs2_recovery_map *rm = osb->recovery_map;
    	struct ocfs2_orphan_scan *os = &osb->osb_orphan_scan;
    	int i, out = 0;
    
    	out += snprintf(buf + out, len - out,
    			"%10s => Id: %-s  Uuid: %-s  Gen: 0x%X  Label: %-s\n",
    			"Device", osb->dev_str, osb->uuid_str,
    			osb->fs_generation, osb->vol_label);
    
    	out += snprintf(buf + out, len - out,
    			"%10s => State: %d  Flags: 0x%lX\n", "Volume",
    			atomic_read(&osb->vol_state), osb->osb_flags);
    
    	out += snprintf(buf + out, len - out,
    			"%10s => Block: %lu  Cluster: %d\n", "Sizes",
    			osb->sb->s_blocksize, osb->s_clustersize);
    
    	out += snprintf(buf + out, len - out,
    			"%10s => Compat: 0x%X  Incompat: 0x%X  "
    			"ROcompat: 0x%X\n",
    			"Features", osb->s_feature_compat,
    			osb->s_feature_incompat, osb->s_feature_ro_compat);
    
    	out += snprintf(buf + out, len - out,
    			"%10s => Opts: 0x%lX  AtimeQuanta: %u\n", "Mount",
    			osb->s_mount_opt, osb->s_atime_quantum);
    
    	if (cconn) {
    		out += snprintf(buf + out, len - out,
    				"%10s => Stack: %s  Name: %*s  "
    				"Version: %d.%d\n", "Cluster",
    				(*osb->osb_cluster_stack == '\0' ?
    				 "o2cb" : osb->osb_cluster_stack),
    				cconn->cc_namelen, cconn->cc_name,
    				cconn->cc_version.pv_major,
    				cconn->cc_version.pv_minor);
    	}
    
    	spin_lock(&osb->dc_task_lock);
    	out += snprintf(buf + out, len - out,
    			"%10s => Pid: %d  Count: %lu  WakeSeq: %lu  "
    			"WorkSeq: %lu\n", "DownCnvt",
    			(osb->dc_task ?  task_pid_nr(osb->dc_task) : -1),
    			osb->blocked_lock_count, osb->dc_wake_sequence,
    			osb->dc_work_sequence);
    	spin_unlock(&osb->dc_task_lock);
    
    	spin_lock(&osb->osb_lock);
    	out += snprintf(buf + out, len - out, "%10s => Pid: %d  Nodes:",
    			"Recovery",
    			(osb->recovery_thread_task ?
    			 task_pid_nr(osb->recovery_thread_task) : -1));
    	if (rm->rm_used == 0)
    		out += snprintf(buf + out, len - out, " None\n");
    	else {
    		for (i = 0; i < rm->rm_used; i++)
    			out += snprintf(buf + out, len - out, " %d",
    					rm->rm_entries[i]);
    		out += snprintf(buf + out, len - out, "\n");
    	}
    	spin_unlock(&osb->osb_lock);
    
    	out += snprintf(buf + out, len - out,
    			"%10s => Pid: %d  Interval: %lu\n", "Commit",
    			(osb->commit_task ? task_pid_nr(osb->commit_task) : -1),
    			osb->osb_commit_interval);
    
    	out += snprintf(buf + out, len - out,
    			"%10s => State: %d  TxnId: %lu  NumTxns: %d\n",
    			"Journal", osb->journal->j_state,
    			osb->journal->j_trans_id,
    			atomic_read(&osb->journal->j_num_trans));
    
    	out += snprintf(buf + out, len - out,
    			"%10s => GlobalAllocs: %d  LocalAllocs: %d  "
    			"SubAllocs: %d  LAWinMoves: %d  SAExtends: %d\n",
    			"Stats",
    			atomic_read(&osb->alloc_stats.bitmap_data),
    			atomic_read(&osb->alloc_stats.local_data),
    			atomic_read(&osb->alloc_stats.bg_allocs),
    			atomic_read(&osb->alloc_stats.moves),
    			atomic_read(&osb->alloc_stats.bg_extends));
    
    	out += snprintf(buf + out, len - out,
    			"%10s => State: %u  Descriptor: %llu  Size: %u bits  "
    			"Default: %u bits\n",
    			"LocalAlloc", osb->local_alloc_state,
    			(unsigned long long)osb->la_last_gd,
    			osb->local_alloc_bits, osb->local_alloc_default_bits);
    
    	spin_lock(&osb->osb_lock);
    	out += snprintf(buf + out, len - out,
    			"%10s => InodeSlot: %d  StolenInodes: %d, "
    			"MetaSlot: %d  StolenMeta: %d\n", "Steal",
    			osb->s_inode_steal_slot,
    			atomic_read(&osb->s_num_inodes_stolen),
    			osb->s_meta_steal_slot,
    			atomic_read(&osb->s_num_meta_stolen));
    	spin_unlock(&osb->osb_lock);
    
    	out += snprintf(buf + out, len - out, "OrphanScan => ");
    	out += snprintf(buf + out, len - out, "Local: %u  Global: %u ",
    			os->os_count, os->os_seqno);
    	out += snprintf(buf + out, len - out, " Last Scan: ");
    	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
    		out += snprintf(buf + out, len - out, "Disabled\n");
    	else
    		out += snprintf(buf + out, len - out, "%lu seconds ago\n",
    				(get_seconds() - os->os_scantime.tv_sec));
    
    	out += snprintf(buf + out, len - out, "%10s => %3s  %10s\n",
    			"Slots", "Num", "RecoGen");
    	for (i = 0; i < osb->max_slots; ++i) {
    		out += snprintf(buf + out, len - out,
    				"%10s  %c %3d  %10d\n",
    				" ",
    				(i == osb->slot_num ? '*' : ' '),
    				i, osb->slot_recovery_generations[i]);
    	}
    
    	return out;
    }
    
    static int ocfs2_osb_debug_open(struct inode *inode, struct file *file)
    {
    	struct ocfs2_super *osb = inode->i_private;
    	char *buf = NULL;
    
    	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
    	if (!buf)
    		goto bail;
    
    	i_size_write(inode, ocfs2_osb_dump(osb, buf, PAGE_SIZE));
    
    	file->private_data = buf;
    
    	return 0;
    bail:
    	return -ENOMEM;
    }
    
    static int ocfs2_debug_release(struct inode *inode, struct file *file)
    {
    	kfree(file->private_data);
    	return 0;
    }
    
    static ssize_t ocfs2_debug_read(struct file *file, char __user *buf,
    				size_t nbytes, loff_t *ppos)
    {
    	return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
    				       i_size_read(file->f_mapping->host));
    }
    #else
    static int ocfs2_osb_debug_open(struct inode *inode, struct file *file)
    {
    	return 0;
    }
    static int ocfs2_debug_release(struct inode *inode, struct file *file)
    {
    	return 0;
    }
    static ssize_t ocfs2_debug_read(struct file *file, char __user *buf,
    				size_t nbytes, loff_t *ppos)
    {
    	return 0;
    }
    #endif	/* CONFIG_DEBUG_FS */
    
    static const struct file_operations ocfs2_osb_debug_fops = {
    	.open =		ocfs2_osb_debug_open,
    	.release =	ocfs2_debug_release,
    	.read =		ocfs2_debug_read,
    	.llseek =	generic_file_llseek,
    };
    
    static int ocfs2_sync_fs(struct super_block *sb, int wait)
    {
    	int status;
    	tid_t target;
    	struct ocfs2_super *osb = OCFS2_SB(sb);
    
    	if (ocfs2_is_hard_readonly(osb))
    		return -EROFS;
    
    	if (wait) {
    		status = ocfs2_flush_truncate_log(osb);
    		if (status < 0)
    			mlog_errno(status);
    	} else {
    		ocfs2_schedule_truncate_log_flush(osb, 0);
    	}
    
    	if (jbd2_journal_start_commit(OCFS2_SB(sb)->journal->j_journal,
    				      &target)) {
    		if (wait)
    			jbd2_log_wait_commit(OCFS2_SB(sb)->journal->j_journal,
    					     target);
    	}
    	return 0;
    }
    
    static int ocfs2_need_system_inode(struct ocfs2_super *osb, int ino)
    {
    	if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
    	    && (ino == USER_QUOTA_SYSTEM_INODE
    		|| ino == LOCAL_USER_QUOTA_SYSTEM_INODE))
    		return 0;
    	if (!OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)
    	    && (ino == GROUP_QUOTA_SYSTEM_INODE
    		|| ino == LOCAL_GROUP_QUOTA_SYSTEM_INODE))
    		return 0;
    	return 1;
    }
    
    static int ocfs2_init_global_system_inodes(struct ocfs2_super *osb)
    {
    	struct inode *new = NULL;
    	int status = 0;
    	int i;
    
    	new = ocfs2_iget(osb, osb->root_blkno, OCFS2_FI_FLAG_SYSFILE, 0);
    	if (IS_ERR(new)) {
    		status = PTR_ERR(new);
    		mlog_errno(status);
    		goto bail;
    	}
    	osb->root_inode = new;
    
    	new = ocfs2_iget(osb, osb->system_dir_blkno, OCFS2_FI_FLAG_SYSFILE, 0);
    	if (IS_ERR(new)) {
    		status = PTR_ERR(new);
    		mlog_errno(status);
    		goto bail;
    	}
    	osb->sys_root_inode = new;
    
    	for (i = OCFS2_FIRST_ONLINE_SYSTEM_INODE;
    	     i <= OCFS2_LAST_GLOBAL_SYSTEM_INODE; i++) {
    		if (!ocfs2_need_system_inode(osb, i))
    			continue;
    		new = ocfs2_get_system_file_inode(osb, i, osb->slot_num);
    		if (!new) {
    			ocfs2_release_system_inodes(osb);
    			status = -EINVAL;
    			mlog_errno(status);
    			/* FIXME: Should ERROR_RO_FS */
    			mlog(ML_ERROR, "Unable to load system inode %d, "
    			     "possibly corrupt fs?", i);
    			goto bail;
    		}
    		// the array now has one ref, so drop this one
    		iput(new);
    	}
    
    bail:
    	if (status)
    		mlog_errno(status);
    	return status;
    }
    
    static int ocfs2_init_local_system_inodes(struct ocfs2_super *osb)
    {
    	struct inode *new = NULL;
    	int status = 0;
    	int i;
    
    	for (i = OCFS2_LAST_GLOBAL_SYSTEM_INODE + 1;
    	     i < NUM_SYSTEM_INODES;
    	     i++) {
    		if (!ocfs2_need_system_inode(osb, i))
    			continue;
    		new = ocfs2_get_system_file_inode(osb, i, osb->slot_num);
    		if (!new) {
    			ocfs2_release_system_inodes(osb);
    			status = -EINVAL;
    			mlog(ML_ERROR, "status=%d, sysfile=%d, slot=%d\n",
    			     status, i, osb->slot_num);
    			goto bail;
    		}
    		/* the array now has one ref, so drop this one */
    		iput(new);
    	}
    
    bail:
    	if (status)
    		mlog_errno(status);
    	return status;
    }
    
    static void ocfs2_release_system_inodes(struct ocfs2_super *osb)
    {
    	int i;
    	struct inode *inode;
    
    	for (i = 0; i < NUM_GLOBAL_SYSTEM_INODES; i++) {
    		inode = osb->global_system_inodes[i];
    		if (inode) {
    			iput(inode);
    			osb->global_system_inodes[i] = NULL;
    		}
    	}
    
    	inode = osb->sys_root_inode;
    	if (inode) {
    		iput(inode);
    		osb->sys_root_inode = NULL;
    	}
    
    	inode = osb->root_inode;
    	if (inode) {
    		iput(inode);
    		osb->root_inode = NULL;
    	}
    
    	if (!osb->local_system_inodes)
    		return;
    
    	for (i = 0; i < NUM_LOCAL_SYSTEM_INODES * osb->max_slots; i++) {
    		if (osb->local_system_inodes[i]) {
    			iput(osb->local_system_inodes[i]);
    			osb->local_system_inodes[i] = NULL;
    		}
    	}
    
    	kfree(osb->local_system_inodes);
    	osb->local_system_inodes = NULL;
    }
    
    /* We're allocating fs objects, use GFP_NOFS */
    static struct inode *ocfs2_alloc_inode(struct super_block *sb)
    {
    	struct ocfs2_inode_info *oi;
    
    	oi = kmem_cache_alloc(ocfs2_inode_cachep, GFP_NOFS);
    	if (!oi)
    		return NULL;
    
    	jbd2_journal_init_jbd_inode(&oi->ip_jinode, &oi->vfs_inode);
    	return &oi->vfs_inode;
    }
    
    static void ocfs2_i_callback(struct rcu_head *head)
    {
    	struct inode *inode = container_of(head, struct inode, i_rcu);
    	kmem_cache_free(ocfs2_inode_cachep, OCFS2_I(inode));
    }
    
    static void ocfs2_destroy_inode(struct inode *inode)
    {
    	call_rcu(&inode->i_rcu, ocfs2_i_callback);
    }
    
    static unsigned long long ocfs2_max_file_offset(unsigned int bbits,
    						unsigned int cbits)
    {
    	unsigned int bytes = 1 << cbits;
    	unsigned int trim = bytes;
    	unsigned int bitshift = 32;
    
    	/*
    	 * i_size and all block offsets in ocfs2 are always 64 bits
    	 * wide. i_clusters is 32 bits, in cluster-sized units. So on
    	 * 64 bit platforms, cluster size will be the limiting factor.
    	 */
    
    #if BITS_PER_LONG == 32
    # if defined(CONFIG_LBDAF)
    	BUILD_BUG_ON(sizeof(sector_t) != 8);
    	/*
    	 * We might be limited by page cache size.
    	 */
    	if (bytes > PAGE_CACHE_SIZE) {
    		bytes = PAGE_CACHE_SIZE;
    		trim = 1;
    		/*
    		 * Shift by 31 here so that we don't get larger than
    		 * MAX_LFS_FILESIZE
    		 */
    		bitshift = 31;
    	}
    # else
    	/*
    	 * We are limited by the size of sector_t. Use block size, as
    	 * that's what we expose to the VFS.
    	 */
    	bytes = 1 << bbits;
    	trim = 1;
    	bitshift = 31;
    # endif
    #endif
    
    	/*
    	 * Trim by a whole cluster when we can actually approach the
    	 * on-disk limits. Otherwise we can overflow i_clusters when
    	 * an extent start is at the max offset.
    	 */
    	return (((unsigned long long)bytes) << bitshift) - trim;
    }
    
    static int ocfs2_remount(struct super_block *sb, int *flags, char *data)
    {
    	int incompat_features;
    	int ret = 0;
    	struct mount_options parsed_options;
    	struct ocfs2_super *osb = OCFS2_SB(sb);
    	u32 tmp;
    
    	if (!ocfs2_parse_options(sb, data, &parsed_options, 1) ||
    	    !ocfs2_check_set_options(sb, &parsed_options)) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	tmp = OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL |
    		OCFS2_MOUNT_HB_NONE;
    	if ((osb->s_mount_opt & tmp) != (parsed_options.mount_opt & tmp)) {
    		ret = -EINVAL;
    		mlog(ML_ERROR, "Cannot change heartbeat mode on remount\n");
    		goto out;
    	}
    
    	if ((osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK) !=
    	    (parsed_options.mount_opt & OCFS2_MOUNT_DATA_WRITEBACK)) {
    		ret = -EINVAL;
    		mlog(ML_ERROR, "Cannot change data mode on remount\n");
    		goto out;
    	}
    
    	/* Probably don't want this on remount; it might
    	 * mess with other nodes */
    	if (!(osb->s_mount_opt & OCFS2_MOUNT_INODE64) &&
    	    (parsed_options.mount_opt & OCFS2_MOUNT_INODE64)) {
    		ret = -EINVAL;
    		mlog(ML_ERROR, "Cannot enable inode64 on remount\n");
    		goto out;
    	}
    
    	/* We're going to/from readonly mode. */
    	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
    		/* Disable quota accounting before remounting RO */
    		if (*flags & MS_RDONLY) {
    			ret = ocfs2_susp_quotas(osb, 0);
    			if (ret < 0)
    				goto out;
    		}
    		/* Lock here so the check of HARD_RO and the potential
    		 * setting of SOFT_RO is atomic. */
    		spin_lock(&osb->osb_lock);
    		if (osb->osb_flags & OCFS2_OSB_HARD_RO) {
    			mlog(ML_ERROR, "Remount on readonly device is forbidden.\n");
    			ret = -EROFS;
    			goto unlock_osb;
    		}
    
    		if (*flags & MS_RDONLY) {
    			sb->s_flags |= MS_RDONLY;
    			osb->osb_flags |= OCFS2_OSB_SOFT_RO;
    		} else {
    			if (osb->osb_flags & OCFS2_OSB_ERROR_FS) {
    				mlog(ML_ERROR, "Cannot remount RDWR "
    				     "filesystem due to previous errors.\n");
    				ret = -EROFS;
    				goto unlock_osb;
    			}
    			incompat_features = OCFS2_HAS_RO_COMPAT_FEATURE(sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP);
    			if (incompat_features) {
    				mlog(ML_ERROR, "Cannot remount RDWR because "
    				     "of unsupported optional features "
    				     "(%x).\n", incompat_features);
    				ret = -EINVAL;
    				goto unlock_osb;
    			}
    			sb->s_flags &= ~MS_RDONLY;
    			osb->osb_flags &= ~OCFS2_OSB_SOFT_RO;
    		}
    		trace_ocfs2_remount(sb->s_flags, osb->osb_flags, *flags);
    unlock_osb:
    		spin_unlock(&osb->osb_lock);
    		/* Enable quota accounting after remounting RW */
    		if (!ret && !(*flags & MS_RDONLY)) {
    			if (sb_any_quota_suspended(sb))
    				ret = ocfs2_susp_quotas(osb, 1);
    			else
    				ret = ocfs2_enable_quotas(osb);
    			if (ret < 0) {
    				/* Return back changes... */
    				spin_lock(&osb->osb_lock);
    				sb->s_flags |= MS_RDONLY;
    				osb->osb_flags |= OCFS2_OSB_SOFT_RO;
    				spin_unlock(&osb->osb_lock);
    				goto out;
    			}
    		}
    	}
    
    	if (!ret) {
    		/* Only save off the new mount options in case of a successful
    		 * remount. */
    		osb->s_mount_opt = parsed_options.mount_opt;
    		osb->s_atime_quantum = parsed_options.atime_quantum;
    		osb->preferred_slot = parsed_options.slot;
    		if (parsed_options.commit_interval)
    			osb->osb_commit_interval = parsed_options.commit_interval;
    
    		if (!ocfs2_is_hard_readonly(osb))
    			ocfs2_set_journal_params(osb);
    
    		sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
    			((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ?
    							MS_POSIXACL : 0);
    	}
    out:
    	return ret;
    }
    
    static int ocfs2_sb_probe(struct super_block *sb,
    			  struct buffer_head **bh,
    			  int *sector_size,
    			  struct ocfs2_blockcheck_stats *stats)
    {
    	int status, tmpstat;
    	struct ocfs1_vol_disk_hdr *hdr;
    	struct ocfs2_dinode *di;
    	int blksize;
    
    	*bh = NULL;
    
    	/* may be > 512 */
    	*sector_size = bdev_logical_block_size(sb->s_bdev);
    	if (*sector_size > OCFS2_MAX_BLOCKSIZE) {
    		mlog(ML_ERROR, "Hardware sector size too large: %d (max=%d)\n",
    		     *sector_size, OCFS2_MAX_BLOCKSIZE);
    		status = -EINVAL;
    		goto bail;
    	}
    
    	/* Can this really happen? */
    	if (*sector_size < OCFS2_MIN_BLOCKSIZE)
    		*sector_size = OCFS2_MIN_BLOCKSIZE;
    
    	/* check block zero for old format */
    	status = ocfs2_get_sector(sb, bh, 0, *sector_size);
    	if (status < 0) {
    		mlog_errno(status);
    		goto bail;
    	}
    	hdr = (struct ocfs1_vol_disk_hdr *) (*bh)->b_data;
    	if (hdr->major_version == OCFS1_MAJOR_VERSION) {
    		mlog(ML_ERROR, "incompatible version: %u.%u\n",
    		     hdr->major_version, hdr->minor_version);
    		status = -EINVAL;
    	}
    	if (memcmp(hdr->signature, OCFS1_VOLUME_SIGNATURE,
    		   strlen(OCFS1_VOLUME_SIGNATURE)) == 0) {
    		mlog(ML_ERROR, "incompatible volume signature: %8s\n",
    		     hdr->signature);
    		status = -EINVAL;
    	}
    	brelse(*bh);
    	*bh = NULL;
    	if (status < 0) {
    		mlog(ML_ERROR, "This is an ocfs v1 filesystem which must be "
    		     "upgraded before mounting with ocfs v2\n");
    		goto bail;
    	}
    
    	/*
    	 * Now check at magic offset for 512, 1024, 2048, 4096
    	 * blocksizes.  4096 is the maximum blocksize because it is
    	 * the minimum clustersize.
    	 */
    	status = -EINVAL;
    	for (blksize = *sector_size;
    	     blksize <= OCFS2_MAX_BLOCKSIZE;
    	     blksize <<= 1) {
    		tmpstat = ocfs2_get_sector(sb, bh,
    					   OCFS2_SUPER_BLOCK_BLKNO,
    					   blksize);
    		if (tmpstat < 0) {
    			status = tmpstat;
    			mlog_errno(status);
    			break;
    		}
    		di = (struct ocfs2_dinode *) (*bh)->b_data;
    		memset(stats, 0, sizeof(struct ocfs2_blockcheck_stats));
    		spin_lock_init(&stats->b_lock);
    		tmpstat = ocfs2_verify_volume(di, *bh, blksize, stats);
    		if (tmpstat < 0) {
    			brelse(*bh);
    			*bh = NULL;
    		}
    		if (tmpstat != -EAGAIN) {
    			status = tmpstat;
    			break;
    		}
    	}
    
    bail:
    	return status;
    }
    
    static int ocfs2_verify_heartbeat(struct ocfs2_super *osb)
    {
    	u32 hb_enabled = OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL;
    
    	if (osb->s_mount_opt & hb_enabled) {
    		if (ocfs2_mount_local(osb)) {
    			mlog(ML_ERROR, "Cannot heartbeat on a locally "
    			     "mounted device.\n");
    			return -EINVAL;
    		}
    		if (ocfs2_userspace_stack(osb)) {
    			mlog(ML_ERROR, "Userspace stack expected, but "
    			     "o2cb heartbeat arguments passed to mount\n");
    			return -EINVAL;
    		}
    		if (((osb->s_mount_opt & OCFS2_MOUNT_HB_GLOBAL) &&
    		     !ocfs2_cluster_o2cb_global_heartbeat(osb)) ||
    		    ((osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) &&
    		     ocfs2_cluster_o2cb_global_heartbeat(osb))) {
    			mlog(ML_ERROR, "Mismatching o2cb heartbeat modes\n");
    			return -EINVAL;
    		}
    	}
    
    	if (!(osb->s_mount_opt & hb_enabled)) {
    		if (!ocfs2_mount_local(osb) && !ocfs2_is_hard_readonly(osb) &&
    		    !ocfs2_userspace_stack(osb)) {
    			mlog(ML_ERROR, "Heartbeat has to be started to mount "
    			     "a read-write clustered device.\n");
    			return -EINVAL;
    		}
    	}
    
    	return 0;
    }
    
    /*
     * If we're using a userspace stack, mount should have passed
     * a name that matches the disk.  If not, mount should not
     * have passed a stack.
     */
    static int ocfs2_verify_userspace_stack(struct ocfs2_super *osb,
    					struct mount_options *mopt)
    {
    	if (!ocfs2_userspace_stack(osb) && mopt->cluster_stack[0]) {
    		mlog(ML_ERROR,
    		     "cluster stack passed to mount, but this filesystem "
    		     "does not support it\n");
    		return -EINVAL;
    	}
    
    	if (ocfs2_userspace_stack(osb) &&
    	    strncmp(osb->osb_cluster_stack, mopt->cluster_stack,
    		    OCFS2_STACK_LABEL_LEN)) {
    		mlog(ML_ERROR,
    		     "cluster stack passed to mount (\"%s\") does not "
    		     "match the filesystem (\"%s\")\n",
    		     mopt->cluster_stack,
    		     osb->osb_cluster_stack);
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int ocfs2_susp_quotas(struct ocfs2_super *osb, int unsuspend)
    {
    	int type;
    	struct super_block *sb = osb->sb;
    	unsigned int feature[MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA,
    					     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA};
    	int status = 0;
    
    	for (type = 0; type < MAXQUOTAS; type++) {
    		if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type]))
    			continue;
    		if (unsuspend)
    			status = dquot_resume(sb, type);
    		else {
    			struct ocfs2_mem_dqinfo *oinfo;
    
    			/* Cancel periodic syncing before suspending */
    			oinfo = sb_dqinfo(sb, type)->dqi_priv;
    			cancel_delayed_work_sync(&oinfo->dqi_sync_work);
    			status = dquot_suspend(sb, type);
    		}
    		if (status < 0)
    			break;
    	}
    	if (status < 0)
    		mlog(ML_ERROR, "Failed to suspend/unsuspend quotas on "
    		     "remount (error = %d).\n", status);
    	return status;
    }
    
    static int ocfs2_enable_quotas(struct ocfs2_super *osb)
    {
    	struct inode *inode[MAXQUOTAS] = { NULL, NULL };
    	struct super_block *sb = osb->sb;
    	unsigned int feature[MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA,
    					     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA};
    	unsigned int ino[MAXQUOTAS] = { LOCAL_USER_QUOTA_SYSTEM_INODE,
    					LOCAL_GROUP_QUOTA_SYSTEM_INODE };
    	int status;
    	int type;
    
    	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NEGATIVE_USAGE;
    	for (type = 0; type < MAXQUOTAS; type++) {
    		if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type]))
    			continue;
    		inode[type] = ocfs2_get_system_file_inode(osb, ino[type],
    							osb->slot_num);
    		if (!inode[type]) {
    			status = -ENOENT;
    			goto out_quota_off;
    		}
    		status = dquot_enable(inode[type], type, QFMT_OCFS2,
    				      DQUOT_USAGE_ENABLED);
    		if (status < 0)
    			goto out_quota_off;
    	}
    
    	for (type = 0; type < MAXQUOTAS; type++)
    		iput(inode[type]);
    	return 0;
    out_quota_off:
    	ocfs2_disable_quotas(osb);
    	for (type = 0; type < MAXQUOTAS; type++)
    		iput(inode[type]);
    	mlog_errno(status);
    	return status;
    }
    
    static void ocfs2_disable_quotas(struct ocfs2_super *osb)
    {
    	int type;
    	struct inode *inode;
    	struct super_block *sb = osb->sb;
    	struct ocfs2_mem_dqinfo *oinfo;
    
    	/* We mostly ignore errors in this function because there's not much
    	 * we can do when we see them */
    	for (type = 0; type < MAXQUOTAS; type++) {
    		if (!sb_has_quota_loaded(sb, type))
    			continue;
    		/* Cancel periodic syncing before we grab dqonoff_mutex */
    		oinfo = sb_dqinfo(sb, type)->dqi_priv;
    		cancel_delayed_work_sync(&oinfo->dqi_sync_work);
    		inode = igrab(sb->s_dquot.files[type]);
    		/* Turn off quotas. This will remove all dquot structures from
    		 * memory and so they will be automatically synced to global
    		 * quota files */
    		dquot_disable(sb, type, DQUOT_USAGE_ENABLED |
    					DQUOT_LIMITS_ENABLED);
    		if (!inode)
    			continue;
    		iput(inode);
    	}
    }
    
    /* Handle quota on quotactl */
    static int ocfs2_quota_on(struct super_block *sb, int type, int format_id)
    {
    	unsigned int feature[MAXQUOTAS] = { OCFS2_FEATURE_RO_COMPAT_USRQUOTA,
    					     OCFS2_FEATURE_RO_COMPAT_GRPQUOTA};
    
    	if (!OCFS2_HAS_RO_COMPAT_FEATURE(sb, feature[type]))
    		return -EINVAL;
    
    	return dquot_enable(sb_dqopt(sb)->files[type], type,
    			    format_id, DQUOT_LIMITS_ENABLED);
    }
    
    /* Handle quota off quotactl */
    static int ocfs2_quota_off(struct super_block *sb, int type)
    {
    	return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
    }
    
    static const struct quotactl_ops ocfs2_quotactl_ops = {
    	.quota_on_meta	= ocfs2_quota_on,
    	.quota_off	= ocfs2_quota_off,
    	.quota_sync	= dquot_quota_sync,
    	.get_info	= dquot_get_dqinfo,
    	.set_info	= dquot_set_dqinfo,
    	.get_dqblk	= dquot_get_dqblk,
    	.set_dqblk	= dquot_set_dqblk,
    };
    
    static int ocfs2_fill_super(struct super_block *sb, void *data, int silent)
    {
    	struct dentry *root;
    	int status, sector_size;
    	struct mount_options parsed_options;
    	struct inode *inode = NULL;
    	struct ocfs2_super *osb = NULL;
    	struct buffer_head *bh = NULL;
    	char nodestr[12];
    	struct ocfs2_blockcheck_stats stats;
    
    	trace_ocfs2_fill_super(sb, data, silent);
    
    	if (!ocfs2_parse_options(sb, data, &parsed_options, 0)) {
    		status = -EINVAL;
    		goto read_super_error;
    	}
    
    	/* probe for superblock */
    	status = ocfs2_sb_probe(sb, &bh, &sector_size, &stats);
    	if (status < 0) {
    		mlog(ML_ERROR, "superblock probe failed!\n");
    		goto read_super_error;
    	}
    
    	status = ocfs2_initialize_super(sb, bh, sector_size, &stats);
    	osb = OCFS2_SB(sb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto read_super_error;
    	}
    	brelse(bh);
    	bh = NULL;
    
    	if (!ocfs2_check_set_options(sb, &parsed_options)) {
    		status = -EINVAL;
    		goto read_super_error;
    	}
    	osb->s_mount_opt = parsed_options.mount_opt;
    	osb->s_atime_quantum = parsed_options.atime_quantum;
    	osb->preferred_slot = parsed_options.slot;
    	osb->osb_commit_interval = parsed_options.commit_interval;
    
    	ocfs2_la_set_sizes(osb, parsed_options.localalloc_opt);
    	osb->osb_resv_level = parsed_options.resv_level;
    	osb->osb_dir_resv_level = parsed_options.resv_level;
    	if (parsed_options.dir_resv_level == -1)
    		osb->osb_dir_resv_level = parsed_options.resv_level;
    	else
    		osb->osb_dir_resv_level = parsed_options.dir_resv_level;
    
    	status = ocfs2_verify_userspace_stack(osb, &parsed_options);
    	if (status)
    		goto read_super_error;
    
    	sb->s_magic = OCFS2_SUPER_MAGIC;
    
    	sb->s_flags = (sb->s_flags & ~(MS_POSIXACL | MS_NOSEC)) |
    		((osb->s_mount_opt & OCFS2_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
    
    	/* Hard readonly mode only if: bdev_read_only, MS_RDONLY,
    	 * heartbeat=none */
    	if (bdev_read_only(sb->s_bdev)) {
    		if (!(sb->s_flags & MS_RDONLY)) {
    			status = -EACCES;
    			mlog(ML_ERROR, "Readonly device detected but readonly "
    			     "mount was not specified.\n");
    			goto read_super_error;
    		}
    
    		/* You should not be able to start a local heartbeat
    		 * on a readonly device. */
    		if (osb->s_mount_opt & OCFS2_MOUNT_HB_LOCAL) {
    			status = -EROFS;
    			mlog(ML_ERROR, "Local heartbeat specified on readonly "
    			     "device.\n");
    			goto read_super_error;
    		}
    
    		status = ocfs2_check_journals_nolocks(osb);
    		if (status < 0) {
    			if (status == -EROFS)
    				mlog(ML_ERROR, "Recovery required on readonly "
    				     "file system, but write access is "
    				     "unavailable.\n");
    			else
    				mlog_errno(status);
    			goto read_super_error;
    		}
    
    		ocfs2_set_ro_flag(osb, 1);
    
    		printk(KERN_NOTICE "ocfs2: Readonly device (%s) detected. "
    		       "Cluster services will not be used for this mount. "
    		       "Recovery will be skipped.\n", osb->dev_str);
    	}
    
    	if (!ocfs2_is_hard_readonly(osb)) {
    		if (sb->s_flags & MS_RDONLY)
    			ocfs2_set_ro_flag(osb, 0);
    	}
    
    	status = ocfs2_verify_heartbeat(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto read_super_error;
    	}
    
    	osb->osb_debug_root = debugfs_create_dir(osb->uuid_str,
    						 ocfs2_debugfs_root);
    	if (!osb->osb_debug_root) {
    		status = -EINVAL;
    		mlog(ML_ERROR, "Unable to create per-mount debugfs root.\n");
    		goto read_super_error;
    	}
    
    	osb->osb_ctxt = debugfs_create_file("fs_state", S_IFREG|S_IRUSR,
    					    osb->osb_debug_root,
    					    osb,
    					    &ocfs2_osb_debug_fops);
    	if (!osb->osb_ctxt) {
    		status = -EINVAL;
    		mlog_errno(status);
    		goto read_super_error;
    	}
    
    	if (ocfs2_meta_ecc(osb)) {
    		status = ocfs2_blockcheck_stats_debugfs_install(
    						&osb->osb_ecc_stats,
    						osb->osb_debug_root);
    		if (status) {
    			mlog(ML_ERROR,
    			     "Unable to create blockcheck statistics "
    			     "files\n");
    			goto read_super_error;
    		}
    	}
    
    	status = ocfs2_mount_volume(sb);
    	if (status < 0)
    		goto read_super_error;
    
    	if (osb->root_inode)
    		inode = igrab(osb->root_inode);
    
    	if (!inode) {
    		status = -EIO;
    		mlog_errno(status);
    		goto read_super_error;
    	}
    
    	root = d_make_root(inode);
    	if (!root) {
    		status = -ENOMEM;
    		mlog_errno(status);
    		goto read_super_error;
    	}
    
    	sb->s_root = root;
    
    	ocfs2_complete_mount_recovery(osb);
    
    	if (ocfs2_mount_local(osb))
    		snprintf(nodestr, sizeof(nodestr), "local");
    	else
    		snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num);
    
    	printk(KERN_INFO "ocfs2: Mounting device (%s) on (node %s, slot %d) "
    	       "with %s data mode.\n",
    	       osb->dev_str, nodestr, osb->slot_num,
    	       osb->s_mount_opt & OCFS2_MOUNT_DATA_WRITEBACK ? "writeback" :
    	       "ordered");
    
    	atomic_set(&osb->vol_state, VOLUME_MOUNTED);
    	wake_up(&osb->osb_mount_event);
    
    	/* Now we can initialize quotas because we can afford to wait
    	 * for cluster locks recovery now. That also means that truncation
    	 * log recovery can happen but that waits for proper quota setup */
    	if (!(sb->s_flags & MS_RDONLY)) {
    		status = ocfs2_enable_quotas(osb);
    		if (status < 0) {
    			/* We have to err-out specially here because
    			 * s_root is already set */
    			mlog_errno(status);
    			atomic_set(&osb->vol_state, VOLUME_DISABLED);
    			wake_up(&osb->osb_mount_event);
    			return status;
    		}
    	}
    
    	ocfs2_complete_quota_recovery(osb);
    
    	/* Now we wake up again for processes waiting for quotas */
    	atomic_set(&osb->vol_state, VOLUME_MOUNTED_QUOTAS);
    	wake_up(&osb->osb_mount_event);
    
    	/* Start this when the mount is almost sure of being successful */
    	ocfs2_orphan_scan_start(osb);
    
    	return status;
    
    read_super_error:
    	brelse(bh);
    
    	if (osb) {
    		atomic_set(&osb->vol_state, VOLUME_DISABLED);
    		wake_up(&osb->osb_mount_event);
    		ocfs2_dismount_volume(sb, 1);
    	}
    
    	if (status)
    		mlog_errno(status);
    	return status;
    }
    
    static struct dentry *ocfs2_mount(struct file_system_type *fs_type,
    			int flags,
    			const char *dev_name,
    			void *data)
    {
    	return mount_bdev(fs_type, flags, dev_name, data, ocfs2_fill_super);
    }
    
    static void ocfs2_kill_sb(struct super_block *sb)
    {
    	struct ocfs2_super *osb = OCFS2_SB(sb);
    
    	/* Failed mount? */
    	if (!osb || atomic_read(&osb->vol_state) == VOLUME_DISABLED)
    		goto out;
    
    	/* Prevent further queueing of inode drop events */
    	spin_lock(&dentry_list_lock);
    	ocfs2_set_osb_flag(osb, OCFS2_OSB_DROP_DENTRY_LOCK_IMMED);
    	spin_unlock(&dentry_list_lock);
    	/* Wait for work to finish and/or remove it */
    	cancel_work_sync(&osb->dentry_lock_work);
    out:
    	kill_block_super(sb);
    }
    
    static struct file_system_type ocfs2_fs_type = {
    	.owner          = THIS_MODULE,
    	.name           = "ocfs2",
    	.mount          = ocfs2_mount,
    	.kill_sb        = ocfs2_kill_sb,
    
    	.fs_flags       = FS_REQUIRES_DEV|FS_RENAME_DOES_D_MOVE,
    	.next           = NULL
    };
    MODULE_ALIAS_FS("ocfs2");
    
    static int ocfs2_check_set_options(struct super_block *sb,
    				   struct mount_options *options)
    {
    	if (options->mount_opt & OCFS2_MOUNT_USRQUOTA &&
    	    !OCFS2_HAS_RO_COMPAT_FEATURE(sb,
    					 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
    		mlog(ML_ERROR, "User quotas were requested, but this "
    		     "filesystem does not have the feature enabled.\n");
    		return 0;
    	}
    	if (options->mount_opt & OCFS2_MOUNT_GRPQUOTA &&
    	    !OCFS2_HAS_RO_COMPAT_FEATURE(sb,
    					 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
    		mlog(ML_ERROR, "Group quotas were requested, but this "
    		     "filesystem does not have the feature enabled.\n");
    		return 0;
    	}
    	if (options->mount_opt & OCFS2_MOUNT_POSIX_ACL &&
    	    !OCFS2_HAS_INCOMPAT_FEATURE(sb, OCFS2_FEATURE_INCOMPAT_XATTR)) {
    		mlog(ML_ERROR, "ACL support requested but extended attributes "
    		     "feature is not enabled\n");
    		return 0;
    	}
    	/* No ACL setting specified? Use XATTR feature... */
    	if (!(options->mount_opt & (OCFS2_MOUNT_POSIX_ACL |
    				    OCFS2_MOUNT_NO_POSIX_ACL))) {
    		if (OCFS2_HAS_INCOMPAT_FEATURE(sb, OCFS2_FEATURE_INCOMPAT_XATTR))
    			options->mount_opt |= OCFS2_MOUNT_POSIX_ACL;
    		else
    			options->mount_opt |= OCFS2_MOUNT_NO_POSIX_ACL;
    	}
    	return 1;
    }
    
    static int ocfs2_parse_options(struct super_block *sb,
    			       char *options,
    			       struct mount_options *mopt,
    			       int is_remount)
    {
    	int status, user_stack = 0;
    	char *p;
    	u32 tmp;
    
    	trace_ocfs2_parse_options(is_remount, options ? options : "(none)");
    
    	mopt->commit_interval = 0;
    	mopt->mount_opt = OCFS2_MOUNT_NOINTR;
    	mopt->atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM;
    	mopt->slot = OCFS2_INVALID_SLOT;
    	mopt->localalloc_opt = -1;
    	mopt->cluster_stack[0] = '\0';
    	mopt->resv_level = OCFS2_DEFAULT_RESV_LEVEL;
    	mopt->dir_resv_level = -1;
    
    	if (!options) {
    		status = 1;
    		goto bail;
    	}
    
    	while ((p = strsep(&options, ",")) != NULL) {
    		int token, option;
    		substring_t args[MAX_OPT_ARGS];
    
    		if (!*p)
    			continue;
    
    		token = match_token(p, tokens, args);
    		switch (token) {
    		case Opt_hb_local:
    			mopt->mount_opt |= OCFS2_MOUNT_HB_LOCAL;
    			break;
    		case Opt_hb_none:
    			mopt->mount_opt |= OCFS2_MOUNT_HB_NONE;
    			break;
    		case Opt_hb_global:
    			mopt->mount_opt |= OCFS2_MOUNT_HB_GLOBAL;
    			break;
    		case Opt_barrier:
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option)
    				mopt->mount_opt |= OCFS2_MOUNT_BARRIER;
    			else
    				mopt->mount_opt &= ~OCFS2_MOUNT_BARRIER;
    			break;
    		case Opt_intr:
    			mopt->mount_opt &= ~OCFS2_MOUNT_NOINTR;
    			break;
    		case Opt_nointr:
    			mopt->mount_opt |= OCFS2_MOUNT_NOINTR;
    			break;
    		case Opt_err_panic:
    			mopt->mount_opt |= OCFS2_MOUNT_ERRORS_PANIC;
    			break;
    		case Opt_err_ro:
    			mopt->mount_opt &= ~OCFS2_MOUNT_ERRORS_PANIC;
    			break;
    		case Opt_data_ordered:
    			mopt->mount_opt &= ~OCFS2_MOUNT_DATA_WRITEBACK;
    			break;
    		case Opt_data_writeback:
    			mopt->mount_opt |= OCFS2_MOUNT_DATA_WRITEBACK;
    			break;
    		case Opt_user_xattr:
    			mopt->mount_opt &= ~OCFS2_MOUNT_NOUSERXATTR;
    			break;
    		case Opt_nouser_xattr:
    			mopt->mount_opt |= OCFS2_MOUNT_NOUSERXATTR;
    			break;
    		case Opt_atime_quantum:
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option >= 0)
    				mopt->atime_quantum = option;
    			break;
    		case Opt_slot:
    			option = 0;
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option)
    				mopt->slot = (s16)option;
    			break;
    		case Opt_commit:
    			option = 0;
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option < 0)
    				return 0;
    			if (option == 0)
    				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
    			mopt->commit_interval = HZ * option;
    			break;
    		case Opt_localalloc:
    			option = 0;
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option >= 0)
    				mopt->localalloc_opt = option;
    			break;
    		case Opt_localflocks:
    			/*
    			 * Changing this during remount could race
    			 * flock() requests, or "unbalance" existing
    			 * ones (e.g., a lock is taken in one mode but
    			 * dropped in the other). If users care enough
    			 * to flip locking modes during remount, we
    			 * could add a "local" flag to individual
    			 * flock structures for proper tracking of
    			 * state.
    			 */
    			if (!is_remount)
    				mopt->mount_opt |= OCFS2_MOUNT_LOCALFLOCKS;
    			break;
    		case Opt_stack:
    			/* Check both that the option we were passed
    			 * is of the right length and that it is a proper
    			 * string of the right length.
    			 */
    			if (((args[0].to - args[0].from) !=
    			     OCFS2_STACK_LABEL_LEN) ||
    			    (strnlen(args[0].from,
    				     OCFS2_STACK_LABEL_LEN) !=
    			     OCFS2_STACK_LABEL_LEN)) {
    				mlog(ML_ERROR,
    				     "Invalid cluster_stack option\n");
    				status = 0;
    				goto bail;
    			}
    			memcpy(mopt->cluster_stack, args[0].from,
    			       OCFS2_STACK_LABEL_LEN);
    			mopt->cluster_stack[OCFS2_STACK_LABEL_LEN] = '\0';
    			/*
    			 * Open code the memcmp here as we don't have
    			 * an osb to pass to
    			 * ocfs2_userspace_stack().
    			 */
    			if (memcmp(mopt->cluster_stack,
    				   OCFS2_CLASSIC_CLUSTER_STACK,
    				   OCFS2_STACK_LABEL_LEN))
    				user_stack = 1;
    			break;
    		case Opt_inode64:
    			mopt->mount_opt |= OCFS2_MOUNT_INODE64;
    			break;
    		case Opt_usrquota:
    			mopt->mount_opt |= OCFS2_MOUNT_USRQUOTA;
    			break;
    		case Opt_grpquota:
    			mopt->mount_opt |= OCFS2_MOUNT_GRPQUOTA;
    			break;
    		case Opt_coherency_buffered:
    			mopt->mount_opt |= OCFS2_MOUNT_COHERENCY_BUFFERED;
    			break;
    		case Opt_coherency_full:
    			mopt->mount_opt &= ~OCFS2_MOUNT_COHERENCY_BUFFERED;
    			break;
    		case Opt_acl:
    			mopt->mount_opt |= OCFS2_MOUNT_POSIX_ACL;
    			mopt->mount_opt &= ~OCFS2_MOUNT_NO_POSIX_ACL;
    			break;
    		case Opt_noacl:
    			mopt->mount_opt |= OCFS2_MOUNT_NO_POSIX_ACL;
    			mopt->mount_opt &= ~OCFS2_MOUNT_POSIX_ACL;
    			break;
    		case Opt_resv_level:
    			if (is_remount)
    				break;
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option >= OCFS2_MIN_RESV_LEVEL &&
    			    option < OCFS2_MAX_RESV_LEVEL)
    				mopt->resv_level = option;
    			break;
    		case Opt_dir_resv_level:
    			if (is_remount)
    				break;
    			if (match_int(&args[0], &option)) {
    				status = 0;
    				goto bail;
    			}
    			if (option >= OCFS2_MIN_RESV_LEVEL &&
    			    option < OCFS2_MAX_RESV_LEVEL)
    				mopt->dir_resv_level = option;
    			break;
    		default:
    			mlog(ML_ERROR,
    			     "Unrecognized mount option \"%s\" "
    			     "or missing value\n", p);
    			status = 0;
    			goto bail;
    		}
    	}
    
    	if (user_stack == 0) {
    		/* Ensure only one heartbeat mode */
    		tmp = mopt->mount_opt & (OCFS2_MOUNT_HB_LOCAL |
    					 OCFS2_MOUNT_HB_GLOBAL |
    					 OCFS2_MOUNT_HB_NONE);
    		if (hweight32(tmp) != 1) {
    			mlog(ML_ERROR, "Invalid heartbeat mount options\n");
    			status = 0;
    			goto bail;
    		}
    	}
    
    	status = 1;
    
    bail:
    	return status;
    }
    
    static int ocfs2_show_options(struct seq_file *s, struct dentry *root)
    {
    	struct ocfs2_super *osb = OCFS2_SB(root->d_sb);
    	unsigned long opts = osb->s_mount_opt;
    	unsigned int local_alloc_megs;
    
    	if (opts & (OCFS2_MOUNT_HB_LOCAL | OCFS2_MOUNT_HB_GLOBAL)) {
    		seq_printf(s, ",_netdev");
    		if (opts & OCFS2_MOUNT_HB_LOCAL)
    			seq_printf(s, ",%s", OCFS2_HB_LOCAL);
    		else
    			seq_printf(s, ",%s", OCFS2_HB_GLOBAL);
    	} else
    		seq_printf(s, ",%s", OCFS2_HB_NONE);
    
    	if (opts & OCFS2_MOUNT_NOINTR)
    		seq_printf(s, ",nointr");
    
    	if (opts & OCFS2_MOUNT_DATA_WRITEBACK)
    		seq_printf(s, ",data=writeback");
    	else
    		seq_printf(s, ",data=ordered");
    
    	if (opts & OCFS2_MOUNT_BARRIER)
    		seq_printf(s, ",barrier=1");
    
    	if (opts & OCFS2_MOUNT_ERRORS_PANIC)
    		seq_printf(s, ",errors=panic");
    	else
    		seq_printf(s, ",errors=remount-ro");
    
    	if (osb->preferred_slot != OCFS2_INVALID_SLOT)
    		seq_printf(s, ",preferred_slot=%d", osb->preferred_slot);
    
    	seq_printf(s, ",atime_quantum=%u", osb->s_atime_quantum);
    
    	if (osb->osb_commit_interval)
    		seq_printf(s, ",commit=%u",
    			   (unsigned) (osb->osb_commit_interval / HZ));
    
    	local_alloc_megs = osb->local_alloc_bits >> (20 - osb->s_clustersize_bits);
    	if (local_alloc_megs != ocfs2_la_default_mb(osb))
    		seq_printf(s, ",localalloc=%d", local_alloc_megs);
    
    	if (opts & OCFS2_MOUNT_LOCALFLOCKS)
    		seq_printf(s, ",localflocks,");
    
    	if (osb->osb_cluster_stack[0])
    		seq_printf(s, ",cluster_stack=%.*s", OCFS2_STACK_LABEL_LEN,
    			   osb->osb_cluster_stack);
    	if (opts & OCFS2_MOUNT_USRQUOTA)
    		seq_printf(s, ",usrquota");
    	if (opts & OCFS2_MOUNT_GRPQUOTA)
    		seq_printf(s, ",grpquota");
    
    	if (opts & OCFS2_MOUNT_COHERENCY_BUFFERED)
    		seq_printf(s, ",coherency=buffered");
    	else
    		seq_printf(s, ",coherency=full");
    
    	if (opts & OCFS2_MOUNT_NOUSERXATTR)
    		seq_printf(s, ",nouser_xattr");
    	else
    		seq_printf(s, ",user_xattr");
    
    	if (opts & OCFS2_MOUNT_INODE64)
    		seq_printf(s, ",inode64");
    
    	if (opts & OCFS2_MOUNT_POSIX_ACL)
    		seq_printf(s, ",acl");
    	else
    		seq_printf(s, ",noacl");
    
    	if (osb->osb_resv_level != OCFS2_DEFAULT_RESV_LEVEL)
    		seq_printf(s, ",resv_level=%d", osb->osb_resv_level);
    
    	if (osb->osb_dir_resv_level != osb->osb_resv_level)
    		seq_printf(s, ",dir_resv_level=%d", osb->osb_resv_level);
    
    	return 0;
    }
    
    wait_queue_head_t ocfs2__ioend_wq[OCFS2_IOEND_WQ_HASH_SZ];
    
    static int __init ocfs2_init(void)
    {
    	int status, i;
    
    	for (i = 0; i < OCFS2_IOEND_WQ_HASH_SZ; i++)
    		init_waitqueue_head(&ocfs2__ioend_wq[i]);
    
    	status = init_ocfs2_uptodate_cache();
    	if (status < 0)
    		goto out1;
    
    	status = ocfs2_initialize_mem_caches();
    	if (status < 0)
    		goto out2;
    
    	ocfs2_wq = create_singlethread_workqueue("ocfs2_wq");
    	if (!ocfs2_wq) {
    		status = -ENOMEM;
    		goto out3;
    	}
    
    	ocfs2_debugfs_root = debugfs_create_dir("ocfs2", NULL);
    	if (!ocfs2_debugfs_root) {
    		status = -EFAULT;
    		mlog(ML_ERROR, "Unable to create ocfs2 debugfs root.\n");
    	}
    
    	ocfs2_set_locking_protocol();
    
    	status = register_quota_format(&ocfs2_quota_format);
    	if (status < 0)
    		goto out4;
    	status = register_filesystem(&ocfs2_fs_type);
    	if (!status)
    		return 0;
    
    	unregister_quota_format(&ocfs2_quota_format);
    out4:
    	destroy_workqueue(ocfs2_wq);
    	debugfs_remove(ocfs2_debugfs_root);
    out3:
    	ocfs2_free_mem_caches();
    out2:
    	exit_ocfs2_uptodate_cache();
    out1:
    	mlog_errno(status);
    	return status;
    }
    
    static void __exit ocfs2_exit(void)
    {
    	if (ocfs2_wq) {
    		flush_workqueue(ocfs2_wq);
    		destroy_workqueue(ocfs2_wq);
    	}
    
    	unregister_quota_format(&ocfs2_quota_format);
    
    	debugfs_remove(ocfs2_debugfs_root);
    
    	ocfs2_free_mem_caches();
    
    	unregister_filesystem(&ocfs2_fs_type);
    
    	exit_ocfs2_uptodate_cache();
    }
    
    static void ocfs2_put_super(struct super_block *sb)
    {
    	trace_ocfs2_put_super(sb);
    
    	ocfs2_sync_blockdev(sb);
    	ocfs2_dismount_volume(sb, 0);
    }
    
    static int ocfs2_statfs(struct dentry *dentry, struct kstatfs *buf)
    {
    	struct ocfs2_super *osb;
    	u32 numbits, freebits;
    	int status;
    	struct ocfs2_dinode *bm_lock;
    	struct buffer_head *bh = NULL;
    	struct inode *inode = NULL;
    
    	trace_ocfs2_statfs(dentry->d_sb, buf);
    
    	osb = OCFS2_SB(dentry->d_sb);
    
    	inode = ocfs2_get_system_file_inode(osb,
    					    GLOBAL_BITMAP_SYSTEM_INODE,
    					    OCFS2_INVALID_SLOT);
    	if (!inode) {
    		mlog(ML_ERROR, "failed to get bitmap inode\n");
    		status = -EIO;
    		goto bail;
    	}
    
    	status = ocfs2_inode_lock(inode, &bh, 0);
    	if (status < 0) {
    		mlog_errno(status);
    		goto bail;
    	}
    
    	bm_lock = (struct ocfs2_dinode *) bh->b_data;
    
    	numbits = le32_to_cpu(bm_lock->id1.bitmap1.i_total);
    	freebits = numbits - le32_to_cpu(bm_lock->id1.bitmap1.i_used);
    
    	buf->f_type = OCFS2_SUPER_MAGIC;
    	buf->f_bsize = dentry->d_sb->s_blocksize;
    	buf->f_namelen = OCFS2_MAX_FILENAME_LEN;
    	buf->f_blocks = ((sector_t) numbits) *
    			(osb->s_clustersize >> osb->sb->s_blocksize_bits);
    	buf->f_bfree = ((sector_t) freebits) *
    		       (osb->s_clustersize >> osb->sb->s_blocksize_bits);
    	buf->f_bavail = buf->f_bfree;
    	buf->f_files = numbits;
    	buf->f_ffree = freebits;
    	buf->f_fsid.val[0] = crc32_le(0, osb->uuid_str, OCFS2_VOL_UUID_LEN)
    				& 0xFFFFFFFFUL;
    	buf->f_fsid.val[1] = crc32_le(0, osb->uuid_str + OCFS2_VOL_UUID_LEN,
    				OCFS2_VOL_UUID_LEN) & 0xFFFFFFFFUL;
    
    	brelse(bh);
    
    	ocfs2_inode_unlock(inode, 0);
    	status = 0;
    bail:
    	if (inode)
    		iput(inode);
    
    	if (status)
    		mlog_errno(status);
    
    	return status;
    }
    
    static void ocfs2_inode_init_once(void *data)
    {
    	struct ocfs2_inode_info *oi = data;
    
    	oi->ip_flags = 0;
    	oi->ip_open_count = 0;
    	spin_lock_init(&oi->ip_lock);
    	ocfs2_extent_map_init(&oi->vfs_inode);
    	INIT_LIST_HEAD(&oi->ip_io_markers);
    	oi->ip_dir_start_lookup = 0;
    	atomic_set(&oi->ip_unaligned_aio, 0);
    	init_rwsem(&oi->ip_alloc_sem);
    	init_rwsem(&oi->ip_xattr_sem);
    	mutex_init(&oi->ip_io_mutex);
    
    	oi->ip_blkno = 0ULL;
    	oi->ip_clusters = 0;
    
    	ocfs2_resv_init_once(&oi->ip_la_data_resv);
    
    	ocfs2_lock_res_init_once(&oi->ip_rw_lockres);
    	ocfs2_lock_res_init_once(&oi->ip_inode_lockres);
    	ocfs2_lock_res_init_once(&oi->ip_open_lockres);
    
    	ocfs2_metadata_cache_init(INODE_CACHE(&oi->vfs_inode),
    				  &ocfs2_inode_caching_ops);
    
    	inode_init_once(&oi->vfs_inode);
    }
    
    static int ocfs2_initialize_mem_caches(void)
    {
    	ocfs2_inode_cachep = kmem_cache_create("ocfs2_inode_cache",
    				       sizeof(struct ocfs2_inode_info),
    				       0,
    				       (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
    						SLAB_MEM_SPREAD),
    				       ocfs2_inode_init_once);
    	ocfs2_dquot_cachep = kmem_cache_create("ocfs2_dquot_cache",
    					sizeof(struct ocfs2_dquot),
    					0,
    					(SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
    						SLAB_MEM_SPREAD),
    					NULL);
    	ocfs2_qf_chunk_cachep = kmem_cache_create("ocfs2_qf_chunk_cache",
    					sizeof(struct ocfs2_quota_chunk),
    					0,
    					(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
    					NULL);
    	if (!ocfs2_inode_cachep || !ocfs2_dquot_cachep ||
    	    !ocfs2_qf_chunk_cachep) {
    		if (ocfs2_inode_cachep)
    			kmem_cache_destroy(ocfs2_inode_cachep);
    		if (ocfs2_dquot_cachep)
    			kmem_cache_destroy(ocfs2_dquot_cachep);
    		if (ocfs2_qf_chunk_cachep)
    			kmem_cache_destroy(ocfs2_qf_chunk_cachep);
    		return -ENOMEM;
    	}
    
    	return 0;
    }
    
    static void ocfs2_free_mem_caches(void)
    {
    	/*
    	 * Make sure all delayed rcu free inodes are flushed before we
    	 * destroy cache.
    	 */
    	rcu_barrier();
    	if (ocfs2_inode_cachep)
    		kmem_cache_destroy(ocfs2_inode_cachep);
    	ocfs2_inode_cachep = NULL;
    
    	if (ocfs2_dquot_cachep)
    		kmem_cache_destroy(ocfs2_dquot_cachep);
    	ocfs2_dquot_cachep = NULL;
    
    	if (ocfs2_qf_chunk_cachep)
    		kmem_cache_destroy(ocfs2_qf_chunk_cachep);
    	ocfs2_qf_chunk_cachep = NULL;
    }
    
    static int ocfs2_get_sector(struct super_block *sb,
    			    struct buffer_head **bh,
    			    int block,
    			    int sect_size)
    {
    	if (!sb_set_blocksize(sb, sect_size)) {
    		mlog(ML_ERROR, "unable to set blocksize\n");
    		return -EIO;
    	}
    
    	*bh = sb_getblk(sb, block);
    	if (!*bh) {
    		mlog_errno(-ENOMEM);
    		return -ENOMEM;
    	}
    	lock_buffer(*bh);
    	if (!buffer_dirty(*bh))
    		clear_buffer_uptodate(*bh);
    	unlock_buffer(*bh);
    	ll_rw_block(READ, 1, bh);
    	wait_on_buffer(*bh);
    	if (!buffer_uptodate(*bh)) {
    		mlog_errno(-EIO);
    		brelse(*bh);
    		*bh = NULL;
    		return -EIO;
    	}
    
    	return 0;
    }
    
    static int ocfs2_mount_volume(struct super_block *sb)
    {
    	int status = 0;
    	int unlock_super = 0;
    	struct ocfs2_super *osb = OCFS2_SB(sb);
    
    	if (ocfs2_is_hard_readonly(osb))
    		goto leave;
    
    	status = ocfs2_dlm_init(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto leave;
    	}
    
    	status = ocfs2_super_lock(osb, 1);
    	if (status < 0) {
    		mlog_errno(status);
    		goto leave;
    	}
    	unlock_super = 1;
    
    	/* This will load up the node map and add ourselves to it. */
    	status = ocfs2_find_slot(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto leave;
    	}
    
    	/* load all node-local system inodes */
    	status = ocfs2_init_local_system_inodes(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto leave;
    	}
    
    	status = ocfs2_check_volume(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto leave;
    	}
    
    	status = ocfs2_truncate_log_init(osb);
    	if (status < 0)
    		mlog_errno(status);
    
    leave:
    	if (unlock_super)
    		ocfs2_super_unlock(osb, 1);
    
    	return status;
    }
    
    static void ocfs2_dismount_volume(struct super_block *sb, int mnt_err)
    {
    	int tmp, hangup_needed = 0;
    	struct ocfs2_super *osb = NULL;
    	char nodestr[12];
    
    	trace_ocfs2_dismount_volume(sb);
    
    	BUG_ON(!sb);
    	osb = OCFS2_SB(sb);
    	BUG_ON(!osb);
    
    	debugfs_remove(osb->osb_ctxt);
    
    	/*
    	 * Flush inode dropping work queue so that deletes are
    	 * performed while the filesystem is still working
    	 */
    	ocfs2_drop_all_dl_inodes(osb);
    
    	/* Orphan scan should be stopped as early as possible */
    	ocfs2_orphan_scan_stop(osb);
    
    	ocfs2_disable_quotas(osb);
    
    	ocfs2_shutdown_local_alloc(osb);
    
    	ocfs2_truncate_log_shutdown(osb);
    
    	/* This will disable recovery and flush any recovery work. */
    	ocfs2_recovery_exit(osb);
    
    	ocfs2_journal_shutdown(osb);
    
    	ocfs2_sync_blockdev(sb);
    
    	ocfs2_purge_refcount_trees(osb);
    
    	/* No cluster connection means we've failed during mount, so skip
    	 * all the steps which depended on that to complete. */
    	if (osb->cconn) {
    		tmp = ocfs2_super_lock(osb, 1);
    		if (tmp < 0) {
    			mlog_errno(tmp);
    			return;
    		}
    	}
    
    	if (osb->slot_num != OCFS2_INVALID_SLOT)
    		ocfs2_put_slot(osb);
    
    	if (osb->cconn)
    		ocfs2_super_unlock(osb, 1);
    
    	ocfs2_release_system_inodes(osb);
    
    	/*
    	 * If we're dismounting due to mount error, mount.ocfs2 will clean
    	 * up heartbeat.  If we're a local mount, there is no heartbeat.
    	 * If we failed before we got a uuid_str yet, we can't stop
    	 * heartbeat.  Otherwise, do it.
    	 */
    	if (!mnt_err && !ocfs2_mount_local(osb) && osb->uuid_str &&
    	    !ocfs2_is_hard_readonly(osb))
    		hangup_needed = 1;
    
    	if (osb->cconn)
    		ocfs2_dlm_shutdown(osb, hangup_needed);
    
    	ocfs2_blockcheck_stats_debugfs_remove(&osb->osb_ecc_stats);
    	debugfs_remove(osb->osb_debug_root);
    
    	if (hangup_needed)
    		ocfs2_cluster_hangup(osb->uuid_str, strlen(osb->uuid_str));
    
    	atomic_set(&osb->vol_state, VOLUME_DISMOUNTED);
    
    	if (ocfs2_mount_local(osb))
    		snprintf(nodestr, sizeof(nodestr), "local");
    	else
    		snprintf(nodestr, sizeof(nodestr), "%u", osb->node_num);
    
    	printk(KERN_INFO "ocfs2: Unmounting device (%s) on (node %s)\n",
    	       osb->dev_str, nodestr);
    
    	ocfs2_delete_osb(osb);
    	kfree(osb);
    	sb->s_dev = 0;
    	sb->s_fs_info = NULL;
    }
    
    static int ocfs2_setup_osb_uuid(struct ocfs2_super *osb, const unsigned char *uuid,
    				unsigned uuid_bytes)
    {
    	int i, ret;
    	char *ptr;
    
    	BUG_ON(uuid_bytes != OCFS2_VOL_UUID_LEN);
    
    	osb->uuid_str = kzalloc(OCFS2_VOL_UUID_LEN * 2 + 1, GFP_KERNEL);
    	if (osb->uuid_str == NULL)
    		return -ENOMEM;
    
    	for (i = 0, ptr = osb->uuid_str; i < OCFS2_VOL_UUID_LEN; i++) {
    		/* print with null */
    		ret = snprintf(ptr, 3, "%02X", uuid[i]);
    		if (ret != 2) /* drop super cleans up */
    			return -EINVAL;
    		/* then only advance past the last char */
    		ptr += 2;
    	}
    
    	return 0;
    }
    
    /* Make sure entire volume is addressable by our journal.  Requires
       osb_clusters_at_boot to be valid and for the journal to have been
       initialized by ocfs2_journal_init(). */
    static int ocfs2_journal_addressable(struct ocfs2_super *osb)
    {
    	int status = 0;
    	u64 max_block =
    		ocfs2_clusters_to_blocks(osb->sb,
    					 osb->osb_clusters_at_boot) - 1;
    
    	/* 32-bit block number is always OK. */
    	if (max_block <= (u32)~0ULL)
    		goto out;
    
    	/* Volume is "huge", so see if our journal is new enough to
    	   support it. */
    	if (!(OCFS2_HAS_COMPAT_FEATURE(osb->sb,
    				       OCFS2_FEATURE_COMPAT_JBD2_SB) &&
    	      jbd2_journal_check_used_features(osb->journal->j_journal, 0, 0,
    					       JBD2_FEATURE_INCOMPAT_64BIT))) {
    		mlog(ML_ERROR, "The journal cannot address the entire volume. "
    		     "Enable the 'block64' journal option with tunefs.ocfs2");
    		status = -EFBIG;
    		goto out;
    	}
    
     out:
    	return status;
    }
    
    static int ocfs2_initialize_super(struct super_block *sb,
    				  struct buffer_head *bh,
    				  int sector_size,
    				  struct ocfs2_blockcheck_stats *stats)
    {
    	int status;
    	int i, cbits, bbits;
    	struct ocfs2_dinode *di = (struct ocfs2_dinode *)bh->b_data;
    	struct inode *inode = NULL;
    	struct ocfs2_journal *journal;
    	__le32 uuid_net_key;
    	struct ocfs2_super *osb;
    	u64 total_blocks;
    
    	osb = kzalloc(sizeof(struct ocfs2_super), GFP_KERNEL);
    	if (!osb) {
    		status = -ENOMEM;
    		mlog_errno(status);
    		goto bail;
    	}
    
    	sb->s_fs_info = osb;
    	sb->s_op = &ocfs2_sops;
    	sb->s_d_op = &ocfs2_dentry_ops;
    	sb->s_export_op = &ocfs2_export_ops;
    	sb->s_qcop = &ocfs2_quotactl_ops;
    	sb->dq_op = &ocfs2_quota_operations;
    	sb->s_xattr = ocfs2_xattr_handlers;
    	sb->s_time_gran = 1;
    	sb->s_flags |= MS_NOATIME;
    	/* this is needed to support O_LARGEFILE */
    	cbits = le32_to_cpu(di->id2.i_super.s_clustersize_bits);
    	bbits = le32_to_cpu(di->id2.i_super.s_blocksize_bits);
    	sb->s_maxbytes = ocfs2_max_file_offset(bbits, cbits);
    
    	osb->osb_dx_mask = (1 << (cbits - bbits)) - 1;
    
    	for (i = 0; i < 3; i++)
    		osb->osb_dx_seed[i] = le32_to_cpu(di->id2.i_super.s_dx_seed[i]);
    	osb->osb_dx_seed[3] = le32_to_cpu(di->id2.i_super.s_uuid_hash);
    
    	osb->sb = sb;
    	/* Save off for ocfs2_rw_direct */
    	osb->s_sectsize_bits = blksize_bits(sector_size);
    	BUG_ON(!osb->s_sectsize_bits);
    
    	spin_lock_init(&osb->dc_task_lock);
    	init_waitqueue_head(&osb->dc_event);
    	osb->dc_work_sequence = 0;
    	osb->dc_wake_sequence = 0;
    	INIT_LIST_HEAD(&osb->blocked_lock_list);
    	osb->blocked_lock_count = 0;
    	spin_lock_init(&osb->osb_lock);
    	spin_lock_init(&osb->osb_xattr_lock);
    	ocfs2_init_steal_slots(osb);
    
    	atomic_set(&osb->alloc_stats.moves, 0);
    	atomic_set(&osb->alloc_stats.local_data, 0);
    	atomic_set(&osb->alloc_stats.bitmap_data, 0);
    	atomic_set(&osb->alloc_stats.bg_allocs, 0);
    	atomic_set(&osb->alloc_stats.bg_extends, 0);
    
    	/* Copy the blockcheck stats from the superblock probe */
    	osb->osb_ecc_stats = *stats;
    
    	ocfs2_init_node_maps(osb);
    
    	snprintf(osb->dev_str, sizeof(osb->dev_str), "%u,%u",
    		 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
    
    	osb->max_slots = le16_to_cpu(di->id2.i_super.s_max_slots);
    	if (osb->max_slots > OCFS2_MAX_SLOTS || osb->max_slots == 0) {
    		mlog(ML_ERROR, "Invalid number of node slots (%u)\n",
    		     osb->max_slots);
    		status = -EINVAL;
    		goto bail;
    	}
    
    	ocfs2_orphan_scan_init(osb);
    
    	status = ocfs2_recovery_init(osb);
    	if (status) {
    		mlog(ML_ERROR, "Unable to initialize recovery state\n");
    		mlog_errno(status);
    		goto bail;
    	}
    
    	init_waitqueue_head(&osb->checkpoint_event);
    
    	osb->s_atime_quantum = OCFS2_DEFAULT_ATIME_QUANTUM;
    
    	osb->slot_num = OCFS2_INVALID_SLOT;
    
    	osb->s_xattr_inline_size = le16_to_cpu(
    					di->id2.i_super.s_xattr_inline_size);
    
    	osb->local_alloc_state = OCFS2_LA_UNUSED;
    	osb->local_alloc_bh = NULL;
    	INIT_DELAYED_WORK(&osb->la_enable_wq, ocfs2_la_enable_worker);
    
    	init_waitqueue_head(&osb->osb_mount_event);
    
    	status = ocfs2_resmap_init(osb, &osb->osb_la_resmap);
    	if (status) {
    		mlog_errno(status);
    		goto bail;
    	}
    
    	osb->vol_label = kmalloc(OCFS2_MAX_VOL_LABEL_LEN, GFP_KERNEL);
    	if (!osb->vol_label) {
    		mlog(ML_ERROR, "unable to alloc vol label\n");
    		status = -ENOMEM;
    		goto bail;
    	}
    
    	osb->slot_recovery_generations =
    		kcalloc(osb->max_slots, sizeof(*osb->slot_recovery_generations),
    			GFP_KERNEL);
    	if (!osb->slot_recovery_generations) {
    		status = -ENOMEM;
    		mlog_errno(status);
    		goto bail;
    	}
    
    	init_waitqueue_head(&osb->osb_wipe_event);
    	osb->osb_orphan_wipes = kcalloc(osb->max_slots,
    					sizeof(*osb->osb_orphan_wipes),
    					GFP_KERNEL);
    	if (!osb->osb_orphan_wipes) {
    		status = -ENOMEM;
    		mlog_errno(status);
    		goto bail;
    	}
    
    	osb->osb_rf_lock_tree = RB_ROOT;
    
    	osb->s_feature_compat =
    		le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_compat);
    	osb->s_feature_ro_compat =
    		le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_ro_compat);
    	osb->s_feature_incompat =
    		le32_to_cpu(OCFS2_RAW_SB(di)->s_feature_incompat);
    
    	if ((i = OCFS2_HAS_INCOMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_INCOMPAT_SUPP))) {
    		mlog(ML_ERROR, "couldn't mount because of unsupported "
    		     "optional features (%x).\n", i);
    		status = -EINVAL;
    		goto bail;
    	}
    	if (!(osb->sb->s_flags & MS_RDONLY) &&
    	    (i = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb, ~OCFS2_FEATURE_RO_COMPAT_SUPP))) {
    		mlog(ML_ERROR, "couldn't mount RDWR because of "
    		     "unsupported optional features (%x).\n", i);
    		status = -EINVAL;
    		goto bail;
    	}
    
    	if (ocfs2_clusterinfo_valid(osb)) {
    		osb->osb_stackflags =
    			OCFS2_RAW_SB(di)->s_cluster_info.ci_stackflags;
    		strlcpy(osb->osb_cluster_stack,
    		       OCFS2_RAW_SB(di)->s_cluster_info.ci_stack,
    		       OCFS2_STACK_LABEL_LEN + 1);
    		if (strlen(osb->osb_cluster_stack) != OCFS2_STACK_LABEL_LEN) {
    			mlog(ML_ERROR,
    			     "couldn't mount because of an invalid "
    			     "cluster stack label (%s) \n",
    			     osb->osb_cluster_stack);
    			status = -EINVAL;
    			goto bail;
    		}
    		strlcpy(osb->osb_cluster_name,
    			OCFS2_RAW_SB(di)->s_cluster_info.ci_cluster,
    			OCFS2_CLUSTER_NAME_LEN + 1);
    	} else {
    		/* The empty string is identical with classic tools that
    		 * don't know about s_cluster_info. */
    		osb->osb_cluster_stack[0] = '\0';
    	}
    
    	get_random_bytes(&osb->s_next_generation, sizeof(u32));
    
    	/* FIXME
    	 * This should be done in ocfs2_journal_init(), but unknown
    	 * ordering issues will cause the filesystem to crash.
    	 * If anyone wants to figure out what part of the code
    	 * refers to osb->journal before ocfs2_journal_init() is run,
    	 * be my guest.
    	 */
    	/* initialize our journal structure */
    
    	journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
    	if (!journal) {
    		mlog(ML_ERROR, "unable to alloc journal\n");
    		status = -ENOMEM;
    		goto bail;
    	}
    	osb->journal = journal;
    	journal->j_osb = osb;
    
    	atomic_set(&journal->j_num_trans, 0);
    	init_rwsem(&journal->j_trans_barrier);
    	init_waitqueue_head(&journal->j_checkpointed);
    	spin_lock_init(&journal->j_lock);
    	journal->j_trans_id = (unsigned long) 1;
    	INIT_LIST_HEAD(&journal->j_la_cleanups);
    	INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
    	journal->j_state = OCFS2_JOURNAL_FREE;
    
    	INIT_WORK(&osb->dentry_lock_work, ocfs2_drop_dl_inodes);
    	osb->dentry_lock_list = NULL;
    
    	/* get some pseudo constants for clustersize bits */
    	osb->s_clustersize_bits =
    		le32_to_cpu(di->id2.i_super.s_clustersize_bits);
    	osb->s_clustersize = 1 << osb->s_clustersize_bits;
    
    	if (osb->s_clustersize < OCFS2_MIN_CLUSTERSIZE ||
    	    osb->s_clustersize > OCFS2_MAX_CLUSTERSIZE) {
    		mlog(ML_ERROR, "Volume has invalid cluster size (%d)\n",
    		     osb->s_clustersize);
    		status = -EINVAL;
    		goto bail;
    	}
    
    	total_blocks = ocfs2_clusters_to_blocks(osb->sb,
    						le32_to_cpu(di->i_clusters));
    
    	status = generic_check_addressable(osb->sb->s_blocksize_bits,
    					   total_blocks);
    	if (status) {
    		mlog(ML_ERROR, "Volume too large "
    		     "to mount safely on this system");
    		status = -EFBIG;
    		goto bail;
    	}
    
    	if (ocfs2_setup_osb_uuid(osb, di->id2.i_super.s_uuid,
    				 sizeof(di->id2.i_super.s_uuid))) {
    		mlog(ML_ERROR, "Out of memory trying to setup our uuid.\n");
    		status = -ENOMEM;
    		goto bail;
    	}
    
    	memcpy(&uuid_net_key, di->id2.i_super.s_uuid, sizeof(uuid_net_key));
    
    	strncpy(osb->vol_label, di->id2.i_super.s_label, 63);
    	osb->vol_label[63] = '\0';
    	osb->root_blkno = le64_to_cpu(di->id2.i_super.s_root_blkno);
    	osb->system_dir_blkno = le64_to_cpu(di->id2.i_super.s_system_dir_blkno);
    	osb->first_cluster_group_blkno =
    		le64_to_cpu(di->id2.i_super.s_first_cluster_group);
    	osb->fs_generation = le32_to_cpu(di->i_fs_generation);
    	osb->uuid_hash = le32_to_cpu(di->id2.i_super.s_uuid_hash);
    	trace_ocfs2_initialize_super(osb->vol_label, osb->uuid_str,
    				     (unsigned long long)osb->root_blkno,
    				     (unsigned long long)osb->system_dir_blkno,
    				     osb->s_clustersize_bits);
    
    	osb->osb_dlm_debug = ocfs2_new_dlm_debug();
    	if (!osb->osb_dlm_debug) {
    		status = -ENOMEM;
    		mlog_errno(status);
    		goto bail;
    	}
    
    	atomic_set(&osb->vol_state, VOLUME_INIT);
    
    	/* load root, system_dir, and all global system inodes */
    	status = ocfs2_init_global_system_inodes(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto bail;
    	}
    
    	/*
    	 * global bitmap
    	 */
    	inode = ocfs2_get_system_file_inode(osb, GLOBAL_BITMAP_SYSTEM_INODE,
    					    OCFS2_INVALID_SLOT);
    	if (!inode) {
    		status = -EINVAL;
    		mlog_errno(status);
    		goto bail;
    	}
    
    	osb->bitmap_blkno = OCFS2_I(inode)->ip_blkno;
    	osb->osb_clusters_at_boot = OCFS2_I(inode)->ip_clusters;
    	iput(inode);
    
    	osb->bitmap_cpg = ocfs2_group_bitmap_size(sb, 0,
    				 osb->s_feature_incompat) * 8;
    
    	status = ocfs2_init_slot_info(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto bail;
    	}
    	cleancache_init_shared_fs((char *)&di->id2.i_super.s_uuid, sb);
    
    bail:
    	return status;
    }
    
    /*
     * will return: -EAGAIN if it is ok to keep searching for superblocks
     *              -EINVAL if there is a bad superblock
     *              0 on success
     */
    static int ocfs2_verify_volume(struct ocfs2_dinode *di,
    			       struct buffer_head *bh,
    			       u32 blksz,
    			       struct ocfs2_blockcheck_stats *stats)
    {
    	int status = -EAGAIN;
    
    	if (memcmp(di->i_signature, OCFS2_SUPER_BLOCK_SIGNATURE,
    		   strlen(OCFS2_SUPER_BLOCK_SIGNATURE)) == 0) {
    		/* We have to do a raw check of the feature here */
    		if (le32_to_cpu(di->id2.i_super.s_feature_incompat) &
    		    OCFS2_FEATURE_INCOMPAT_META_ECC) {
    			status = ocfs2_block_check_validate(bh->b_data,
    							    bh->b_size,
    							    &di->i_check,
    							    stats);
    			if (status)
    				goto out;
    		}
    		status = -EINVAL;
    		if ((1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits)) != blksz) {
    			mlog(ML_ERROR, "found superblock with incorrect block "
    			     "size: found %u, should be %u\n",
    			     1 << le32_to_cpu(di->id2.i_super.s_blocksize_bits),
    			       blksz);
    		} else if (le16_to_cpu(di->id2.i_super.s_major_rev_level) !=
    			   OCFS2_MAJOR_REV_LEVEL ||
    			   le16_to_cpu(di->id2.i_super.s_minor_rev_level) !=
    			   OCFS2_MINOR_REV_LEVEL) {
    			mlog(ML_ERROR, "found superblock with bad version: "
    			     "found %u.%u, should be %u.%u\n",
    			     le16_to_cpu(di->id2.i_super.s_major_rev_level),
    			     le16_to_cpu(di->id2.i_super.s_minor_rev_level),
    			     OCFS2_MAJOR_REV_LEVEL,
    			     OCFS2_MINOR_REV_LEVEL);
    		} else if (bh->b_blocknr != le64_to_cpu(di->i_blkno)) {
    			mlog(ML_ERROR, "bad block number on superblock: "
    			     "found %llu, should be %llu\n",
    			     (unsigned long long)le64_to_cpu(di->i_blkno),
    			     (unsigned long long)bh->b_blocknr);
    		} else if (le32_to_cpu(di->id2.i_super.s_clustersize_bits) < 12 ||
    			    le32_to_cpu(di->id2.i_super.s_clustersize_bits) > 20) {
    			mlog(ML_ERROR, "bad cluster size found: %u\n",
    			     1 << le32_to_cpu(di->id2.i_super.s_clustersize_bits));
    		} else if (!le64_to_cpu(di->id2.i_super.s_root_blkno)) {
    			mlog(ML_ERROR, "bad root_blkno: 0\n");
    		} else if (!le64_to_cpu(di->id2.i_super.s_system_dir_blkno)) {
    			mlog(ML_ERROR, "bad system_dir_blkno: 0\n");
    		} else if (le16_to_cpu(di->id2.i_super.s_max_slots) > OCFS2_MAX_SLOTS) {
    			mlog(ML_ERROR,
    			     "Superblock slots found greater than file system "
    			     "maximum: found %u, max %u\n",
    			     le16_to_cpu(di->id2.i_super.s_max_slots),
    			     OCFS2_MAX_SLOTS);
    		} else {
    			/* found it! */
    			status = 0;
    		}
    	}
    
    out:
    	if (status && status != -EAGAIN)
    		mlog_errno(status);
    	return status;
    }
    
    static int ocfs2_check_volume(struct ocfs2_super *osb)
    {
    	int status;
    	int dirty;
    	int local;
    	struct ocfs2_dinode *local_alloc = NULL; /* only used if we
    						  * recover
    						  * ourselves. */
    
    	/* Init our journal object. */
    	status = ocfs2_journal_init(osb->journal, &dirty);
    	if (status < 0) {
    		mlog(ML_ERROR, "Could not initialize journal!\n");
    		goto finally;
    	}
    
    	/* Now that journal has been initialized, check to make sure
    	   entire volume is addressable. */
    	status = ocfs2_journal_addressable(osb);
    	if (status)
    		goto finally;
    
    	/* If the journal was unmounted cleanly then we don't want to
    	 * recover anything. Otherwise, journal_load will do that
    	 * dirty work for us :) */
    	if (!dirty) {
    		status = ocfs2_journal_wipe(osb->journal, 0);
    		if (status < 0) {
    			mlog_errno(status);
    			goto finally;
    		}
    	} else {
    		printk(KERN_NOTICE "ocfs2: File system on device (%s) was not "
    		       "unmounted cleanly, recovering it.\n", osb->dev_str);
    	}
    
    	local = ocfs2_mount_local(osb);
    
    	/* will play back anything left in the journal. */
    	status = ocfs2_journal_load(osb->journal, local, dirty);
    	if (status < 0) {
    		mlog(ML_ERROR, "ocfs2 journal load failed! %d\n", status);
    		goto finally;
    	}
    
    	if (dirty) {
    		/* recover my local alloc if we didn't unmount cleanly. */
    		status = ocfs2_begin_local_alloc_recovery(osb,
    							  osb->slot_num,
    							  &local_alloc);
    		if (status < 0) {
    			mlog_errno(status);
    			goto finally;
    		}
    		/* we complete the recovery process after we've marked
    		 * ourselves as mounted. */
    	}
    
    	status = ocfs2_load_local_alloc(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto finally;
    	}
    
    	if (dirty) {
    		/* Recovery will be completed after we've mounted the
    		 * rest of the volume. */
    		osb->dirty = 1;
    		osb->local_alloc_copy = local_alloc;
    		local_alloc = NULL;
    	}
    
    	/* go through each journal, trylock it and if you get the
    	 * lock, and it's marked as dirty, set the bit in the recover
    	 * map and launch a recovery thread for it. */
    	status = ocfs2_mark_dead_nodes(osb);
    	if (status < 0) {
    		mlog_errno(status);
    		goto finally;
    	}
    
    	status = ocfs2_compute_replay_slots(osb);
    	if (status < 0)
    		mlog_errno(status);
    
    finally:
    	kfree(local_alloc);
    
    	if (status)
    		mlog_errno(status);
    	return status;
    }
    
    /*
     * The routine gets called from dismount or close whenever a dismount on
     * volume is requested and the osb open count becomes 1.
     * It will remove the osb from the global list and also free up all the
     * initialized resources and fileobject.
     */
    static void ocfs2_delete_osb(struct ocfs2_super *osb)
    {
    	/* This function assumes that the caller has the main osb resource */
    
    	ocfs2_free_slot_info(osb);
    
    	kfree(osb->osb_orphan_wipes);
    	kfree(osb->slot_recovery_generations);
    	/* FIXME
    	 * This belongs in journal shutdown, but because we have to
    	 * allocate osb->journal at the start of ocfs2_initialize_osb(),
    	 * we free it here.
    	 */
    	kfree(osb->journal);
    	kfree(osb->local_alloc_copy);
    	kfree(osb->uuid_str);
    	ocfs2_put_dlm_debug(osb->osb_dlm_debug);
    	memset(osb, 0, sizeof(struct ocfs2_super));
    }
    
    /* Put OCFS2 into a readonly state, or (if the user specifies it),
     * panic(). We do not support continue-on-error operation. */
    static void ocfs2_handle_error(struct super_block *sb)
    {
    	struct ocfs2_super *osb = OCFS2_SB(sb);
    
    	if (osb->s_mount_opt & OCFS2_MOUNT_ERRORS_PANIC)
    		panic("OCFS2: (device %s): panic forced after error\n",
    		      sb->s_id);
    
    	ocfs2_set_osb_flag(osb, OCFS2_OSB_ERROR_FS);
    
    	if (sb->s_flags & MS_RDONLY &&
    	    (ocfs2_is_soft_readonly(osb) ||
    	     ocfs2_is_hard_readonly(osb)))
    		return;
    
    	printk(KERN_CRIT "File system is now read-only due to the potential "
    	       "of on-disk corruption. Please run fsck.ocfs2 once the file "
    	       "system is unmounted.\n");
    	sb->s_flags |= MS_RDONLY;
    	ocfs2_set_ro_flag(osb, 0);
    }
    
    static char error_buf[1024];
    
    void __ocfs2_error(struct super_block *sb,
    		   const char *function,
    		   const char *fmt, ...)
    {
    	va_list args;
    
    	va_start(args, fmt);
    	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
    	va_end(args);
    
    	/* Not using mlog here because we want to show the actual
    	 * function the error came from. */
    	printk(KERN_CRIT "OCFS2: ERROR (device %s): %s: %s\n",
    	       sb->s_id, function, error_buf);
    
    	ocfs2_handle_error(sb);
    }
    
    /* Handle critical errors. This is intentionally more drastic than
     * ocfs2_handle_error, so we only use for things like journal errors,
     * etc. */
    void __ocfs2_abort(struct super_block* sb,
    		   const char *function,
    		   const char *fmt, ...)
    {
    	va_list args;
    
    	va_start(args, fmt);
    	vsnprintf(error_buf, sizeof(error_buf), fmt, args);
    	va_end(args);
    
    	printk(KERN_CRIT "OCFS2: abort (device %s): %s: %s\n",
    	       sb->s_id, function, error_buf);
    
    	/* We don't have the cluster support yet to go straight to
    	 * hard readonly in here. Until then, we want to keep
    	 * ocfs2_abort() so that we can at least mark critical
    	 * errors.
    	 *
    	 * TODO: This should abort the journal and alert other nodes
    	 * that our slot needs recovery. */
    
    	/* Force a panic(). This stinks, but it's better than letting
    	 * things continue without having a proper hard readonly
    	 * here. */
    	if (!ocfs2_mount_local(OCFS2_SB(sb)))
    		OCFS2_SB(sb)->s_mount_opt |= OCFS2_MOUNT_ERRORS_PANIC;
    	ocfs2_handle_error(sb);
    }
    
    /*
     * Void signal blockers, because in-kernel sigprocmask() only fails
     * when SIG_* is wrong.
     */
    void ocfs2_block_signals(sigset_t *oldset)
    {
    	int rc;
    	sigset_t blocked;
    
    	sigfillset(&blocked);
    	rc = sigprocmask(SIG_BLOCK, &blocked, oldset);
    	BUG_ON(rc);
    }
    
    void ocfs2_unblock_signals(sigset_t *oldset)
    {
    	int rc = sigprocmask(SIG_SETMASK, oldset, NULL);
    	BUG_ON(rc);
    }
    
    module_init(ocfs2_init);
    module_exit(ocfs2_exit);