Skip to content
Snippets Groups Projects
Select Git revision
  • ac08468867e99bc02b22baf4e58bc3537e9d852c
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-sdio-wp
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • seco_lf-6.6.52-2.2.1_e88-e83-init
  • seco_lf-6.6.52-2.2.1_e88-g101ean02
  • seco_lf-6.6.52-2.2.1_e88-sscg
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

mmu.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    mmu.c 41.46 KiB
    /*
     *  linux/arch/arm/mm/mmu.c
     *
     *  Copyright (C) 1995-2005 Russell King
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     */
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/errno.h>
    #include <linux/init.h>
    #include <linux/mman.h>
    #include <linux/nodemask.h>
    #include <linux/memblock.h>
    #include <linux/fs.h>
    #include <linux/vmalloc.h>
    #include <linux/sizes.h>
    
    #include <asm/cp15.h>
    #include <asm/cputype.h>
    #include <asm/sections.h>
    #include <asm/cachetype.h>
    #include <asm/fixmap.h>
    #include <asm/sections.h>
    #include <asm/setup.h>
    #include <asm/smp_plat.h>
    #include <asm/tlb.h>
    #include <asm/highmem.h>
    #include <asm/system_info.h>
    #include <asm/traps.h>
    #include <asm/procinfo.h>
    #include <asm/memory.h>
    
    #include <asm/mach/arch.h>
    #include <asm/mach/map.h>
    #include <asm/mach/pci.h>
    #include <asm/fixmap.h>
    
    #include "mm.h"
    #include "tcm.h"
    
    /*
     * empty_zero_page is a special page that is used for
     * zero-initialized data and COW.
     */
    struct page *empty_zero_page;
    EXPORT_SYMBOL(empty_zero_page);
    
    /*
     * The pmd table for the upper-most set of pages.
     */
    pmd_t *top_pmd;
    
    pmdval_t user_pmd_table = _PAGE_USER_TABLE;
    
    #define CPOLICY_UNCACHED	0
    #define CPOLICY_BUFFERED	1
    #define CPOLICY_WRITETHROUGH	2
    #define CPOLICY_WRITEBACK	3
    #define CPOLICY_WRITEALLOC	4
    
    static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
    static unsigned int ecc_mask __initdata = 0;
    pgprot_t pgprot_user;
    pgprot_t pgprot_kernel;
    pgprot_t pgprot_hyp_device;
    pgprot_t pgprot_s2;
    pgprot_t pgprot_s2_device;
    
    EXPORT_SYMBOL(pgprot_user);
    EXPORT_SYMBOL(pgprot_kernel);
    
    struct cachepolicy {
    	const char	policy[16];
    	unsigned int	cr_mask;
    	pmdval_t	pmd;
    	pteval_t	pte;
    	pteval_t	pte_s2;
    };
    
    #ifdef CONFIG_ARM_LPAE
    #define s2_policy(policy)	policy
    #else
    #define s2_policy(policy)	0
    #endif
    
    static struct cachepolicy cache_policies[] __initdata = {
    	{
    		.policy		= "uncached",
    		.cr_mask	= CR_W|CR_C,
    		.pmd		= PMD_SECT_UNCACHED,
    		.pte		= L_PTE_MT_UNCACHED,
    		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
    	}, {
    		.policy		= "buffered",
    		.cr_mask	= CR_C,
    		.pmd		= PMD_SECT_BUFFERED,
    		.pte		= L_PTE_MT_BUFFERABLE,
    		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
    	}, {
    		.policy		= "writethrough",
    		.cr_mask	= 0,
    		.pmd		= PMD_SECT_WT,
    		.pte		= L_PTE_MT_WRITETHROUGH,
    		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
    	}, {
    		.policy		= "writeback",
    		.cr_mask	= 0,
    		.pmd		= PMD_SECT_WB,
    		.pte		= L_PTE_MT_WRITEBACK,
    		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
    	}, {
    		.policy		= "writealloc",
    		.cr_mask	= 0,
    		.pmd		= PMD_SECT_WBWA,
    		.pte		= L_PTE_MT_WRITEALLOC,
    		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
    	}
    };
    
    #ifdef CONFIG_CPU_CP15
    static unsigned long initial_pmd_value __initdata = 0;
    
    /*
     * Initialise the cache_policy variable with the initial state specified
     * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
     * the C code sets the page tables up with the same policy as the head
     * assembly code, which avoids an illegal state where the TLBs can get
     * confused.  See comments in early_cachepolicy() for more information.
     */
    void __init init_default_cache_policy(unsigned long pmd)
    {
    	int i;
    
    	initial_pmd_value = pmd;
    
    	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
    
    	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
    		if (cache_policies[i].pmd == pmd) {
    			cachepolicy = i;
    			break;
    		}
    
    	if (i == ARRAY_SIZE(cache_policies))
    		pr_err("ERROR: could not find cache policy\n");
    }
    
    /*
     * These are useful for identifying cache coherency problems by allowing
     * the cache or the cache and writebuffer to be turned off.  (Note: the
     * write buffer should not be on and the cache off).
     */
    static int __init early_cachepolicy(char *p)
    {
    	int i, selected = -1;
    
    	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
    		int len = strlen(cache_policies[i].policy);
    
    		if (memcmp(p, cache_policies[i].policy, len) == 0) {
    			selected = i;
    			break;
    		}
    	}
    
    	if (selected == -1)
    		pr_err("ERROR: unknown or unsupported cache policy\n");
    
    	/*
    	 * This restriction is partly to do with the way we boot; it is
    	 * unpredictable to have memory mapped using two different sets of
    	 * memory attributes (shared, type, and cache attribs).  We can not
    	 * change these attributes once the initial assembly has setup the
    	 * page tables.
    	 */
    	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
    		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
    			cache_policies[cachepolicy].policy);
    		return 0;
    	}
    
    	if (selected != cachepolicy) {
    		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
    		cachepolicy = selected;
    		flush_cache_all();
    		set_cr(cr);
    	}
    	return 0;
    }
    early_param("cachepolicy", early_cachepolicy);
    
    static int __init early_nocache(char *__unused)
    {
    	char *p = "buffered";
    	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
    	early_cachepolicy(p);
    	return 0;
    }
    early_param("nocache", early_nocache);
    
    static int __init early_nowrite(char *__unused)
    {
    	char *p = "uncached";
    	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
    	early_cachepolicy(p);
    	return 0;
    }
    early_param("nowb", early_nowrite);
    
    #ifndef CONFIG_ARM_LPAE
    static int __init early_ecc(char *p)
    {
    	if (memcmp(p, "on", 2) == 0)
    		ecc_mask = PMD_PROTECTION;
    	else if (memcmp(p, "off", 3) == 0)
    		ecc_mask = 0;
    	return 0;
    }
    early_param("ecc", early_ecc);
    #endif
    
    #else /* ifdef CONFIG_CPU_CP15 */
    
    static int __init early_cachepolicy(char *p)
    {
    	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
    }
    early_param("cachepolicy", early_cachepolicy);
    
    static int __init noalign_setup(char *__unused)
    {
    	pr_warn("noalign kernel parameter not supported without cp15\n");
    }
    __setup("noalign", noalign_setup);
    
    #endif /* ifdef CONFIG_CPU_CP15 / else */
    
    #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
    #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
    #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
    
    static struct mem_type mem_types[] = {
    	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
    		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
    				  L_PTE_SHARED,
    		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
    				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
    				  L_PTE_SHARED,
    		.prot_l1	= PMD_TYPE_TABLE,
    		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
    		.domain		= DOMAIN_IO,
    	},
    	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
    		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
    		.prot_l1	= PMD_TYPE_TABLE,
    		.prot_sect	= PROT_SECT_DEVICE,
    		.domain		= DOMAIN_IO,
    	},
    	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
    		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
    		.prot_l1	= PMD_TYPE_TABLE,
    		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
    		.domain		= DOMAIN_IO,
    	},
    	[MT_DEVICE_WC] = {	/* ioremap_wc */
    		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
    		.prot_l1	= PMD_TYPE_TABLE,
    		.prot_sect	= PROT_SECT_DEVICE,
    		.domain		= DOMAIN_IO,
    	},
    	[MT_UNCACHED] = {
    		.prot_pte	= PROT_PTE_DEVICE,
    		.prot_l1	= PMD_TYPE_TABLE,
    		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
    		.domain		= DOMAIN_IO,
    	},
    	[MT_CACHECLEAN] = {
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
    		.domain    = DOMAIN_KERNEL,
    	},
    #ifndef CONFIG_ARM_LPAE
    	[MT_MINICLEAN] = {
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
    		.domain    = DOMAIN_KERNEL,
    	},
    #endif
    	[MT_LOW_VECTORS] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    				L_PTE_RDONLY,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.domain    = DOMAIN_USER,
    	},
    	[MT_HIGH_VECTORS] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    				L_PTE_USER | L_PTE_RDONLY,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.domain    = DOMAIN_USER,
    	},
    	[MT_MEMORY_RWX] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_MEMORY_RW] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    			     L_PTE_XN,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_ROM] = {
    		.prot_sect = PMD_TYPE_SECT,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_MEMORY_RWX_NONCACHED] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    				L_PTE_MT_BUFFERABLE,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_MEMORY_RW_DTCM] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    				L_PTE_XN,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_MEMORY_RWX_ITCM] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_MEMORY_RW_SO] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    				L_PTE_MT_UNCACHED | L_PTE_XN,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
    				PMD_SECT_UNCACHED | PMD_SECT_XN,
    		.domain    = DOMAIN_KERNEL,
    	},
    	[MT_MEMORY_DMA_READY] = {
    		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    				L_PTE_XN,
    		.prot_l1   = PMD_TYPE_TABLE,
    		.domain    = DOMAIN_KERNEL,
    	},
    };
    
    const struct mem_type *get_mem_type(unsigned int type)
    {
    	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
    }
    EXPORT_SYMBOL(get_mem_type);
    
    /*
     * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
     * As a result, this can only be called with preemption disabled, as under
     * stop_machine().
     */
    void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
    {
    	unsigned long vaddr = __fix_to_virt(idx);
    	pte_t *pte = pte_offset_kernel(pmd_off_k(vaddr), vaddr);
    
    	/* Make sure fixmap region does not exceed available allocation. */
    	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
    		     FIXADDR_END);
    	BUG_ON(idx >= __end_of_fixed_addresses);
    
    	if (pgprot_val(prot))
    		set_pte_at(NULL, vaddr, pte,
    			pfn_pte(phys >> PAGE_SHIFT, prot));
    	else
    		pte_clear(NULL, vaddr, pte);
    	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
    }
    
    /*
     * Adjust the PMD section entries according to the CPU in use.
     */
    static void __init build_mem_type_table(void)
    {
    	struct cachepolicy *cp;
    	unsigned int cr = get_cr();
    	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
    	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
    	int cpu_arch = cpu_architecture();
    	int i;
    
    	if (cpu_arch < CPU_ARCH_ARMv6) {
    #if defined(CONFIG_CPU_DCACHE_DISABLE)
    		if (cachepolicy > CPOLICY_BUFFERED)
    			cachepolicy = CPOLICY_BUFFERED;
    #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
    		if (cachepolicy > CPOLICY_WRITETHROUGH)
    			cachepolicy = CPOLICY_WRITETHROUGH;
    #endif
    	}
    	if (cpu_arch < CPU_ARCH_ARMv5) {
    		if (cachepolicy >= CPOLICY_WRITEALLOC)
    			cachepolicy = CPOLICY_WRITEBACK;
    		ecc_mask = 0;
    	}
    
    	if (is_smp()) {
    		if (cachepolicy != CPOLICY_WRITEALLOC) {
    			pr_warn("Forcing write-allocate cache policy for SMP\n");
    			cachepolicy = CPOLICY_WRITEALLOC;
    		}
    		if (!(initial_pmd_value & PMD_SECT_S)) {
    			pr_warn("Forcing shared mappings for SMP\n");
    			initial_pmd_value |= PMD_SECT_S;
    		}
    	}
    
    	/*
    	 * Strip out features not present on earlier architectures.
    	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
    	 * without extended page tables don't have the 'Shared' bit.
    	 */
    	if (cpu_arch < CPU_ARCH_ARMv5)
    		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
    			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
    	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
    		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
    			mem_types[i].prot_sect &= ~PMD_SECT_S;
    
    	/*
    	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
    	 * "update-able on write" bit on ARM610).  However, Xscale and
    	 * Xscale3 require this bit to be cleared.
    	 */
    	if (cpu_is_xscale() || cpu_is_xsc3()) {
    		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    			mem_types[i].prot_sect &= ~PMD_BIT4;
    			mem_types[i].prot_l1 &= ~PMD_BIT4;
    		}
    	} else if (cpu_arch < CPU_ARCH_ARMv6) {
    		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    			if (mem_types[i].prot_l1)
    				mem_types[i].prot_l1 |= PMD_BIT4;
    			if (mem_types[i].prot_sect)
    				mem_types[i].prot_sect |= PMD_BIT4;
    		}
    	}
    
    	/*
    	 * Mark the device areas according to the CPU/architecture.
    	 */
    	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
    		if (!cpu_is_xsc3()) {
    			/*
    			 * Mark device regions on ARMv6+ as execute-never
    			 * to prevent speculative instruction fetches.
    			 */
    			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
    			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
    			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
    			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
    
    			/* Also setup NX memory mapping */
    			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
    		}
    		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
    			/*
    			 * For ARMv7 with TEX remapping,
    			 * - shared device is SXCB=1100
    			 * - nonshared device is SXCB=0100
    			 * - write combine device mem is SXCB=0001
    			 * (Uncached Normal memory)
    			 */
    			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
    			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
    			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
    		} else if (cpu_is_xsc3()) {
    			/*
    			 * For Xscale3,
    			 * - shared device is TEXCB=00101
    			 * - nonshared device is TEXCB=01000
    			 * - write combine device mem is TEXCB=00100
    			 * (Inner/Outer Uncacheable in xsc3 parlance)
    			 */
    			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
    			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
    			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
    		} else {
    			/*
    			 * For ARMv6 and ARMv7 without TEX remapping,
    			 * - shared device is TEXCB=00001
    			 * - nonshared device is TEXCB=01000
    			 * - write combine device mem is TEXCB=00100
    			 * (Uncached Normal in ARMv6 parlance).
    			 */
    			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
    			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
    			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
    		}
    	} else {
    		/*
    		 * On others, write combining is "Uncached/Buffered"
    		 */
    		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
    	}
    
    	/*
    	 * Now deal with the memory-type mappings
    	 */
    	cp = &cache_policies[cachepolicy];
    	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
    	s2_pgprot = cp->pte_s2;
    	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
    	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
    
    #ifndef CONFIG_ARM_LPAE
    	/*
    	 * We don't use domains on ARMv6 (since this causes problems with
    	 * v6/v7 kernels), so we must use a separate memory type for user
    	 * r/o, kernel r/w to map the vectors page.
    	 */
    	if (cpu_arch == CPU_ARCH_ARMv6)
    		vecs_pgprot |= L_PTE_MT_VECTORS;
    
    	/*
    	 * Check is it with support for the PXN bit
    	 * in the Short-descriptor translation table format descriptors.
    	 */
    	if (cpu_arch == CPU_ARCH_ARMv7 &&
    		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
    		user_pmd_table |= PMD_PXNTABLE;
    	}
    #endif
    
    	/*
    	 * ARMv6 and above have extended page tables.
    	 */
    	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
    #ifndef CONFIG_ARM_LPAE
    		/*
    		 * Mark cache clean areas and XIP ROM read only
    		 * from SVC mode and no access from userspace.
    		 */
    		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
    		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
    		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
    #endif
    
    		/*
    		 * If the initial page tables were created with the S bit
    		 * set, then we need to do the same here for the same
    		 * reasons given in early_cachepolicy().
    		 */
    		if (initial_pmd_value & PMD_SECT_S) {
    			user_pgprot |= L_PTE_SHARED;
    			kern_pgprot |= L_PTE_SHARED;
    			vecs_pgprot |= L_PTE_SHARED;
    			s2_pgprot |= L_PTE_SHARED;
    			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
    			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
    			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
    			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
    			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
    			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
    			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
    			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
    			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
    			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
    			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
    		}
    	}
    
    	/*
    	 * Non-cacheable Normal - intended for memory areas that must
    	 * not cause dirty cache line writebacks when used
    	 */
    	if (cpu_arch >= CPU_ARCH_ARMv6) {
    		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
    			/* Non-cacheable Normal is XCB = 001 */
    			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
    				PMD_SECT_BUFFERED;
    		} else {
    			/* For both ARMv6 and non-TEX-remapping ARMv7 */
    			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
    				PMD_SECT_TEX(1);
    		}
    	} else {
    		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
    	}
    
    #ifdef CONFIG_ARM_LPAE
    	/*
    	 * Do not generate access flag faults for the kernel mappings.
    	 */
    	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    		mem_types[i].prot_pte |= PTE_EXT_AF;
    		if (mem_types[i].prot_sect)
    			mem_types[i].prot_sect |= PMD_SECT_AF;
    	}
    	kern_pgprot |= PTE_EXT_AF;
    	vecs_pgprot |= PTE_EXT_AF;
    
    	/*
    	 * Set PXN for user mappings
    	 */
    	user_pgprot |= PTE_EXT_PXN;
    #endif
    
    	for (i = 0; i < 16; i++) {
    		pteval_t v = pgprot_val(protection_map[i]);
    		protection_map[i] = __pgprot(v | user_pgprot);
    	}
    
    	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
    	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
    
    	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
    	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
    				 L_PTE_DIRTY | kern_pgprot);
    	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
    	pgprot_s2_device  = __pgprot(s2_device_pgprot);
    	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
    
    	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
    	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
    	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
    	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
    	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
    	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
    	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
    	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
    	mem_types[MT_ROM].prot_sect |= cp->pmd;
    
    	switch (cp->pmd) {
    	case PMD_SECT_WT:
    		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
    		break;
    	case PMD_SECT_WB:
    	case PMD_SECT_WBWA:
    		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
    		break;
    	}
    	pr_info("Memory policy: %sData cache %s\n",
    		ecc_mask ? "ECC enabled, " : "", cp->policy);
    
    	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    		struct mem_type *t = &mem_types[i];
    		if (t->prot_l1)
    			t->prot_l1 |= PMD_DOMAIN(t->domain);
    		if (t->prot_sect)
    			t->prot_sect |= PMD_DOMAIN(t->domain);
    	}
    }
    
    #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
    pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
    			      unsigned long size, pgprot_t vma_prot)
    {
    	if (!pfn_valid(pfn))
    		return pgprot_noncached(vma_prot);
    	else if (file->f_flags & O_SYNC)
    		return pgprot_writecombine(vma_prot);
    	return vma_prot;
    }
    EXPORT_SYMBOL(phys_mem_access_prot);
    #endif
    
    #define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
    
    static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
    {
    	void *ptr = __va(memblock_alloc(sz, align));
    	memset(ptr, 0, sz);
    	return ptr;
    }
    
    static void __init *early_alloc(unsigned long sz)
    {
    	return early_alloc_aligned(sz, sz);
    }
    
    static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
    {
    	if (pmd_none(*pmd)) {
    		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
    		__pmd_populate(pmd, __pa(pte), prot);
    	}
    	BUG_ON(pmd_bad(*pmd));
    	return pte_offset_kernel(pmd, addr);
    }
    
    static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
    				  unsigned long end, unsigned long pfn,
    				  const struct mem_type *type)
    {
    	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
    	do {
    		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
    		pfn++;
    	} while (pte++, addr += PAGE_SIZE, addr != end);
    }
    
    static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
    			unsigned long end, phys_addr_t phys,
    			const struct mem_type *type)
    {
    	pmd_t *p = pmd;
    
    #ifndef CONFIG_ARM_LPAE
    	/*
    	 * In classic MMU format, puds and pmds are folded in to
    	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
    	 * group of L1 entries making up one logical pointer to
    	 * an L2 table (2MB), where as PMDs refer to the individual
    	 * L1 entries (1MB). Hence increment to get the correct
    	 * offset for odd 1MB sections.
    	 * (See arch/arm/include/asm/pgtable-2level.h)
    	 */
    	if (addr & SECTION_SIZE)
    		pmd++;
    #endif
    	do {
    		*pmd = __pmd(phys | type->prot_sect);
    		phys += SECTION_SIZE;
    	} while (pmd++, addr += SECTION_SIZE, addr != end);
    
    	flush_pmd_entry(p);
    }
    
    static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
    				      unsigned long end, phys_addr_t phys,
    				      const struct mem_type *type)
    {
    	pmd_t *pmd = pmd_offset(pud, addr);
    	unsigned long next;
    
    	do {
    		/*
    		 * With LPAE, we must loop over to map
    		 * all the pmds for the given range.
    		 */
    		next = pmd_addr_end(addr, end);
    
    		/*
    		 * Try a section mapping - addr, next and phys must all be
    		 * aligned to a section boundary.
    		 */
    		if (type->prot_sect &&
    				((addr | next | phys) & ~SECTION_MASK) == 0) {
    			__map_init_section(pmd, addr, next, phys, type);
    		} else {
    			alloc_init_pte(pmd, addr, next,
    						__phys_to_pfn(phys), type);
    		}
    
    		phys += next - addr;
    
    	} while (pmd++, addr = next, addr != end);
    }
    
    static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
    				  unsigned long end, phys_addr_t phys,
    				  const struct mem_type *type)
    {
    	pud_t *pud = pud_offset(pgd, addr);
    	unsigned long next;
    
    	do {
    		next = pud_addr_end(addr, end);
    		alloc_init_pmd(pud, addr, next, phys, type);
    		phys += next - addr;
    	} while (pud++, addr = next, addr != end);
    }
    
    #ifndef CONFIG_ARM_LPAE
    static void __init create_36bit_mapping(struct map_desc *md,
    					const struct mem_type *type)
    {
    	unsigned long addr, length, end;
    	phys_addr_t phys;
    	pgd_t *pgd;
    
    	addr = md->virtual;
    	phys = __pfn_to_phys(md->pfn);
    	length = PAGE_ALIGN(md->length);
    
    	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
    		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
    		       (long long)__pfn_to_phys((u64)md->pfn), addr);
    		return;
    	}
    
    	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
    	 *	Since domain assignments can in fact be arbitrary, the
    	 *	'domain == 0' check below is required to insure that ARMv6
    	 *	supersections are only allocated for domain 0 regardless
    	 *	of the actual domain assignments in use.
    	 */
    	if (type->domain) {
    		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
    		       (long long)__pfn_to_phys((u64)md->pfn), addr);
    		return;
    	}
    
    	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
    		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
    		       (long long)__pfn_to_phys((u64)md->pfn), addr);
    		return;
    	}
    
    	/*
    	 * Shift bits [35:32] of address into bits [23:20] of PMD
    	 * (See ARMv6 spec).
    	 */
    	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
    
    	pgd = pgd_offset_k(addr);
    	end = addr + length;
    	do {
    		pud_t *pud = pud_offset(pgd, addr);
    		pmd_t *pmd = pmd_offset(pud, addr);
    		int i;
    
    		for (i = 0; i < 16; i++)
    			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
    
    		addr += SUPERSECTION_SIZE;
    		phys += SUPERSECTION_SIZE;
    		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
    	} while (addr != end);
    }
    #endif	/* !CONFIG_ARM_LPAE */
    
    /*
     * Create the page directory entries and any necessary
     * page tables for the mapping specified by `md'.  We
     * are able to cope here with varying sizes and address
     * offsets, and we take full advantage of sections and
     * supersections.
     */
    static void __init create_mapping(struct map_desc *md)
    {
    	unsigned long addr, length, end;
    	phys_addr_t phys;
    	const struct mem_type *type;
    	pgd_t *pgd;
    
    	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
    		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
    			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
    		return;
    	}
    
    	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
    	    md->virtual >= PAGE_OFFSET &&
    	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
    		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
    			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
    	}
    
    	type = &mem_types[md->type];
    
    #ifndef CONFIG_ARM_LPAE
    	/*
    	 * Catch 36-bit addresses
    	 */
    	if (md->pfn >= 0x100000) {
    		create_36bit_mapping(md, type);
    		return;
    	}
    #endif
    
    	addr = md->virtual & PAGE_MASK;
    	phys = __pfn_to_phys(md->pfn);
    	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
    
    	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
    		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
    			(long long)__pfn_to_phys(md->pfn), addr);
    		return;
    	}
    
    	pgd = pgd_offset_k(addr);
    	end = addr + length;
    	do {
    		unsigned long next = pgd_addr_end(addr, end);
    
    		alloc_init_pud(pgd, addr, next, phys, type);
    
    		phys += next - addr;
    		addr = next;
    	} while (pgd++, addr != end);
    }
    
    /*
     * Create the architecture specific mappings
     */
    void __init iotable_init(struct map_desc *io_desc, int nr)
    {
    	struct map_desc *md;
    	struct vm_struct *vm;
    	struct static_vm *svm;
    
    	if (!nr)
    		return;
    
    	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
    
    	for (md = io_desc; nr; md++, nr--) {
    		create_mapping(md);
    
    		vm = &svm->vm;
    		vm->addr = (void *)(md->virtual & PAGE_MASK);
    		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
    		vm->phys_addr = __pfn_to_phys(md->pfn);
    		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
    		vm->flags |= VM_ARM_MTYPE(md->type);
    		vm->caller = iotable_init;
    		add_static_vm_early(svm++);
    	}
    }
    
    void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
    				  void *caller)
    {
    	struct vm_struct *vm;
    	struct static_vm *svm;
    
    	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
    
    	vm = &svm->vm;
    	vm->addr = (void *)addr;
    	vm->size = size;
    	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
    	vm->caller = caller;
    	add_static_vm_early(svm);
    }
    
    #ifndef CONFIG_ARM_LPAE
    
    /*
     * The Linux PMD is made of two consecutive section entries covering 2MB
     * (see definition in include/asm/pgtable-2level.h).  However a call to
     * create_mapping() may optimize static mappings by using individual
     * 1MB section mappings.  This leaves the actual PMD potentially half
     * initialized if the top or bottom section entry isn't used, leaving it
     * open to problems if a subsequent ioremap() or vmalloc() tries to use
     * the virtual space left free by that unused section entry.
     *
     * Let's avoid the issue by inserting dummy vm entries covering the unused
     * PMD halves once the static mappings are in place.
     */
    
    static void __init pmd_empty_section_gap(unsigned long addr)
    {
    	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
    }
    
    static void __init fill_pmd_gaps(void)
    {
    	struct static_vm *svm;
    	struct vm_struct *vm;
    	unsigned long addr, next = 0;
    	pmd_t *pmd;
    
    	list_for_each_entry(svm, &static_vmlist, list) {
    		vm = &svm->vm;
    		addr = (unsigned long)vm->addr;
    		if (addr < next)
    			continue;
    
    		/*
    		 * Check if this vm starts on an odd section boundary.
    		 * If so and the first section entry for this PMD is free
    		 * then we block the corresponding virtual address.
    		 */
    		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
    			pmd = pmd_off_k(addr);
    			if (pmd_none(*pmd))
    				pmd_empty_section_gap(addr & PMD_MASK);
    		}
    
    		/*
    		 * Then check if this vm ends on an odd section boundary.
    		 * If so and the second section entry for this PMD is empty
    		 * then we block the corresponding virtual address.
    		 */
    		addr += vm->size;
    		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
    			pmd = pmd_off_k(addr) + 1;
    			if (pmd_none(*pmd))
    				pmd_empty_section_gap(addr);
    		}
    
    		/* no need to look at any vm entry until we hit the next PMD */
    		next = (addr + PMD_SIZE - 1) & PMD_MASK;
    	}
    }
    
    #else
    #define fill_pmd_gaps() do { } while (0)
    #endif
    
    #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
    static void __init pci_reserve_io(void)
    {
    	struct static_vm *svm;
    
    	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
    	if (svm)
    		return;
    
    	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
    }
    #else
    #define pci_reserve_io() do { } while (0)
    #endif
    
    #ifdef CONFIG_DEBUG_LL
    void __init debug_ll_io_init(void)
    {
    	struct map_desc map;
    
    	debug_ll_addr(&map.pfn, &map.virtual);
    	if (!map.pfn || !map.virtual)
    		return;
    	map.pfn = __phys_to_pfn(map.pfn);
    	map.virtual &= PAGE_MASK;
    	map.length = PAGE_SIZE;
    	map.type = MT_DEVICE;
    	iotable_init(&map, 1);
    }
    #endif
    
    static void * __initdata vmalloc_min =
    	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
    
    /*
     * vmalloc=size forces the vmalloc area to be exactly 'size'
     * bytes. This can be used to increase (or decrease) the vmalloc
     * area - the default is 240m.
     */
    static int __init early_vmalloc(char *arg)
    {
    	unsigned long vmalloc_reserve = memparse(arg, NULL);
    
    	if (vmalloc_reserve < SZ_16M) {
    		vmalloc_reserve = SZ_16M;
    		pr_warn("vmalloc area too small, limiting to %luMB\n",
    			vmalloc_reserve >> 20);
    	}
    
    	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
    		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
    		pr_warn("vmalloc area is too big, limiting to %luMB\n",
    			vmalloc_reserve >> 20);
    	}
    
    	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
    	return 0;
    }
    early_param("vmalloc", early_vmalloc);
    
    phys_addr_t arm_lowmem_limit __initdata = 0;
    
    void __init sanity_check_meminfo(void)
    {
    	phys_addr_t memblock_limit = 0;
    	int highmem = 0;
    	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
    	struct memblock_region *reg;
    
    	for_each_memblock(memory, reg) {
    		phys_addr_t block_start = reg->base;
    		phys_addr_t block_end = reg->base + reg->size;
    		phys_addr_t size_limit = reg->size;
    
    		if (reg->base >= vmalloc_limit)
    			highmem = 1;
    		else
    			size_limit = vmalloc_limit - reg->base;
    
    
    		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
    
    			if (highmem) {
    				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
    					  &block_start, &block_end);
    				memblock_remove(reg->base, reg->size);
    				continue;
    			}
    
    			if (reg->size > size_limit) {
    				phys_addr_t overlap_size = reg->size - size_limit;
    
    				pr_notice("Truncating RAM at %pa-%pa to -%pa",
    					  &block_start, &block_end, &vmalloc_limit);
    				memblock_remove(vmalloc_limit, overlap_size);
    				block_end = vmalloc_limit;
    			}
    		}
    
    		if (!highmem) {
    			if (block_end > arm_lowmem_limit) {
    				if (reg->size > size_limit)
    					arm_lowmem_limit = vmalloc_limit;
    				else
    					arm_lowmem_limit = block_end;
    			}
    
    			/*
    			 * Find the first non-section-aligned page, and point
    			 * memblock_limit at it. This relies on rounding the
    			 * limit down to be section-aligned, which happens at
    			 * the end of this function.
    			 *
    			 * With this algorithm, the start or end of almost any
    			 * bank can be non-section-aligned. The only exception
    			 * is that the start of the bank 0 must be section-
    			 * aligned, since otherwise memory would need to be
    			 * allocated when mapping the start of bank 0, which
    			 * occurs before any free memory is mapped.
    			 */
    			if (!memblock_limit) {
    				if (!IS_ALIGNED(block_start, SECTION_SIZE))
    					memblock_limit = block_start;
    				else if (!IS_ALIGNED(block_end, SECTION_SIZE))
    					memblock_limit = arm_lowmem_limit;
    			}
    
    		}
    	}
    
    	high_memory = __va(arm_lowmem_limit - 1) + 1;
    
    	/*
    	 * Round the memblock limit down to a section size.  This
    	 * helps to ensure that we will allocate memory from the
    	 * last full section, which should be mapped.
    	 */
    	if (memblock_limit)
    		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
    	if (!memblock_limit)
    		memblock_limit = arm_lowmem_limit;
    
    	memblock_set_current_limit(memblock_limit);
    }
    
    static inline void prepare_page_table(void)
    {
    	unsigned long addr;
    	phys_addr_t end;
    
    	/*
    	 * Clear out all the mappings below the kernel image.
    	 */
    	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
    		pmd_clear(pmd_off_k(addr));
    
    #ifdef CONFIG_XIP_KERNEL
    	/* The XIP kernel is mapped in the module area -- skip over it */
    	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
    #endif
    	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
    		pmd_clear(pmd_off_k(addr));
    
    	/*
    	 * Find the end of the first block of lowmem.
    	 */
    	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
    	if (end >= arm_lowmem_limit)
    		end = arm_lowmem_limit;
    
    	/*
    	 * Clear out all the kernel space mappings, except for the first
    	 * memory bank, up to the vmalloc region.
    	 */
    	for (addr = __phys_to_virt(end);
    	     addr < VMALLOC_START; addr += PMD_SIZE)
    		pmd_clear(pmd_off_k(addr));
    }
    
    #ifdef CONFIG_ARM_LPAE
    /* the first page is reserved for pgd */
    #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
    				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
    #else
    #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
    #endif
    
    /*
     * Reserve the special regions of memory
     */
    void __init arm_mm_memblock_reserve(void)
    {
    	/*
    	 * Reserve the page tables.  These are already in use,
    	 * and can only be in node 0.
    	 */
    	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
    
    #ifdef CONFIG_SA1111
    	/*
    	 * Because of the SA1111 DMA bug, we want to preserve our
    	 * precious DMA-able memory...
    	 */
    	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
    #endif
    }
    
    /*
     * Set up the device mappings.  Since we clear out the page tables for all
     * mappings above VMALLOC_START, we will remove any debug device mappings.
     * This means you have to be careful how you debug this function, or any
     * called function.  This means you can't use any function or debugging
     * method which may touch any device, otherwise the kernel _will_ crash.
     */
    static void __init devicemaps_init(const struct machine_desc *mdesc)
    {
    	struct map_desc map;
    	unsigned long addr;
    	void *vectors;
    
    	/*
    	 * Allocate the vector page early.
    	 */
    	vectors = early_alloc(PAGE_SIZE * 2);
    
    	early_trap_init(vectors);
    
    	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
    		pmd_clear(pmd_off_k(addr));
    
    	/*
    	 * Map the kernel if it is XIP.
    	 * It is always first in the modulearea.
    	 */
    #ifdef CONFIG_XIP_KERNEL
    	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
    	map.virtual = MODULES_VADDR;
    	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
    	map.type = MT_ROM;
    	create_mapping(&map);
    #endif
    
    	/*
    	 * Map the cache flushing regions.
    	 */
    #ifdef FLUSH_BASE
    	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
    	map.virtual = FLUSH_BASE;
    	map.length = SZ_1M;
    	map.type = MT_CACHECLEAN;
    	create_mapping(&map);
    #endif
    #ifdef FLUSH_BASE_MINICACHE
    	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
    	map.virtual = FLUSH_BASE_MINICACHE;
    	map.length = SZ_1M;
    	map.type = MT_MINICLEAN;
    	create_mapping(&map);
    #endif
    
    	/*
    	 * Create a mapping for the machine vectors at the high-vectors
    	 * location (0xffff0000).  If we aren't using high-vectors, also
    	 * create a mapping at the low-vectors virtual address.
    	 */
    	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
    	map.virtual = 0xffff0000;
    	map.length = PAGE_SIZE;
    #ifdef CONFIG_KUSER_HELPERS
    	map.type = MT_HIGH_VECTORS;
    #else
    	map.type = MT_LOW_VECTORS;
    #endif
    	create_mapping(&map);
    
    	if (!vectors_high()) {
    		map.virtual = 0;
    		map.length = PAGE_SIZE * 2;
    		map.type = MT_LOW_VECTORS;
    		create_mapping(&map);
    	}
    
    	/* Now create a kernel read-only mapping */
    	map.pfn += 1;
    	map.virtual = 0xffff0000 + PAGE_SIZE;
    	map.length = PAGE_SIZE;
    	map.type = MT_LOW_VECTORS;
    	create_mapping(&map);
    
    	/*
    	 * Ask the machine support to map in the statically mapped devices.
    	 */
    	if (mdesc->map_io)
    		mdesc->map_io();
    	else
    		debug_ll_io_init();
    	fill_pmd_gaps();
    
    	/* Reserve fixed i/o space in VMALLOC region */
    	pci_reserve_io();
    
    	/*
    	 * Finally flush the caches and tlb to ensure that we're in a
    	 * consistent state wrt the writebuffer.  This also ensures that
    	 * any write-allocated cache lines in the vector page are written
    	 * back.  After this point, we can start to touch devices again.
    	 */
    	local_flush_tlb_all();
    	flush_cache_all();
    }
    
    static void __init kmap_init(void)
    {
    #ifdef CONFIG_HIGHMEM
    	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
    		PKMAP_BASE, _PAGE_KERNEL_TABLE);
    #endif
    
    	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
    			_PAGE_KERNEL_TABLE);
    }
    
    static void __init map_lowmem(void)
    {
    	struct memblock_region *reg;
    	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
    	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
    
    	/* Map all the lowmem memory banks. */
    	for_each_memblock(memory, reg) {
    		phys_addr_t start = reg->base;
    		phys_addr_t end = start + reg->size;
    		struct map_desc map;
    
    		if (end > arm_lowmem_limit)
    			end = arm_lowmem_limit;
    		if (start >= end)
    			break;
    
    		if (end < kernel_x_start) {
    			map.pfn = __phys_to_pfn(start);
    			map.virtual = __phys_to_virt(start);
    			map.length = end - start;
    			map.type = MT_MEMORY_RWX;
    
    			create_mapping(&map);
    		} else if (start >= kernel_x_end) {
    			map.pfn = __phys_to_pfn(start);
    			map.virtual = __phys_to_virt(start);
    			map.length = end - start;
    			map.type = MT_MEMORY_RW;
    
    			create_mapping(&map);
    		} else {
    			/* This better cover the entire kernel */
    			if (start < kernel_x_start) {
    				map.pfn = __phys_to_pfn(start);
    				map.virtual = __phys_to_virt(start);
    				map.length = kernel_x_start - start;
    				map.type = MT_MEMORY_RW;
    
    				create_mapping(&map);
    			}
    
    			map.pfn = __phys_to_pfn(kernel_x_start);
    			map.virtual = __phys_to_virt(kernel_x_start);
    			map.length = kernel_x_end - kernel_x_start;
    			map.type = MT_MEMORY_RWX;
    
    			create_mapping(&map);
    
    			if (kernel_x_end < end) {
    				map.pfn = __phys_to_pfn(kernel_x_end);
    				map.virtual = __phys_to_virt(kernel_x_end);
    				map.length = end - kernel_x_end;
    				map.type = MT_MEMORY_RW;
    
    				create_mapping(&map);
    			}
    		}
    	}
    }
    
    #ifdef CONFIG_ARM_LPAE
    /*
     * early_paging_init() recreates boot time page table setup, allowing machines
     * to switch over to a high (>4G) address space on LPAE systems
     */
    void __init early_paging_init(const struct machine_desc *mdesc,
    			      struct proc_info_list *procinfo)
    {
    	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
    	unsigned long map_start, map_end;
    	pgd_t *pgd0, *pgdk;
    	pud_t *pud0, *pudk, *pud_start;
    	pmd_t *pmd0, *pmdk;
    	phys_addr_t phys;
    	int i;
    
    	if (!(mdesc->init_meminfo))
    		return;
    
    	/* remap kernel code and data */
    	map_start = init_mm.start_code & PMD_MASK;
    	map_end   = ALIGN(init_mm.brk, PMD_SIZE);
    
    	/* get a handle on things... */
    	pgd0 = pgd_offset_k(0);
    	pud_start = pud0 = pud_offset(pgd0, 0);
    	pmd0 = pmd_offset(pud0, 0);
    
    	pgdk = pgd_offset_k(map_start);
    	pudk = pud_offset(pgdk, map_start);
    	pmdk = pmd_offset(pudk, map_start);
    
    	mdesc->init_meminfo();
    
    	/* Run the patch stub to update the constants */
    	fixup_pv_table(&__pv_table_begin,
    		(&__pv_table_end - &__pv_table_begin) << 2);
    
    	/*
    	 * Cache cleaning operations for self-modifying code
    	 * We should clean the entries by MVA but running a
    	 * for loop over every pv_table entry pointer would
    	 * just complicate the code.
    	 */
    	flush_cache_louis();
    	dsb(ishst);
    	isb();
    
    	/*
    	 * FIXME: This code is not architecturally compliant: we modify
    	 * the mappings in-place, indeed while they are in use by this
    	 * very same code.  This may lead to unpredictable behaviour of
    	 * the CPU.
    	 *
    	 * Even modifying the mappings in a separate page table does
    	 * not resolve this.
    	 *
    	 * The architecture strongly recommends that when a mapping is
    	 * changed, that it is changed by first going via an invalid
    	 * mapping and back to the new mapping.  This is to ensure that
    	 * no TLB conflicts (caused by the TLB having more than one TLB
    	 * entry match a translation) can occur.  However, doing that
    	 * here will result in unmapping the code we are running.
    	 */
    	pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
    	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
    
    	/*
    	 * Remap level 1 table.  This changes the physical addresses
    	 * used to refer to the level 2 page tables to the high
    	 * physical address alias, leaving everything else the same.
    	 */
    	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
    		set_pud(pud0,
    			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
    		pmd0 += PTRS_PER_PMD;
    	}
    
    	/*
    	 * Remap the level 2 table, pointing the mappings at the high
    	 * physical address alias of these pages.
    	 */
    	phys = __pa(map_start);
    	do {
    		*pmdk++ = __pmd(phys | pmdprot);
    		phys += PMD_SIZE;
    	} while (phys < map_end);
    
    	/*
    	 * Ensure that the above updates are flushed out of the cache.
    	 * This is not strictly correct; on a system where the caches
    	 * are coherent with each other, but the MMU page table walks
    	 * may not be coherent, flush_cache_all() may be a no-op, and
    	 * this will fail.
    	 */
    	flush_cache_all();
    
    	/*
    	 * Re-write the TTBR values to point them at the high physical
    	 * alias of the page tables.  We expect __va() will work on
    	 * cpu_get_pgd(), which returns the value of TTBR0.
    	 */
    	cpu_switch_mm(pgd0, &init_mm);
    	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
    
    	/* Finally flush any stale TLB values. */
    	local_flush_bp_all();
    	local_flush_tlb_all();
    }
    
    #else
    
    void __init early_paging_init(const struct machine_desc *mdesc,
    			      struct proc_info_list *procinfo)
    {
    	if (mdesc->init_meminfo)
    		mdesc->init_meminfo();
    }
    
    #endif
    
    /*
     * paging_init() sets up the page tables, initialises the zone memory
     * maps, and sets up the zero page, bad page and bad page tables.
     */
    void __init paging_init(const struct machine_desc *mdesc)
    {
    	void *zero_page;
    
    	build_mem_type_table();
    	prepare_page_table();
    	map_lowmem();
    	dma_contiguous_remap();
    	devicemaps_init(mdesc);
    	kmap_init();
    	tcm_init();
    
    	top_pmd = pmd_off_k(0xffff0000);
    
    	/* allocate the zero page. */
    	zero_page = early_alloc(PAGE_SIZE);
    
    	bootmem_init();
    
    	empty_zero_page = virt_to_page(zero_page);
    	__flush_dcache_page(NULL, empty_zero_page);
    }