Skip to content
Snippets Groups Projects
Select Git revision
  • a5af879a9565abd8a8cf0cda96a0ef7d17c81b8e
  • seco_lf-6.6.52-2.2.1 default protected
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/oleksii/fix-mtk-misc-artifacts/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-dtb
  • seco_lf-6.6.52-2.2.1-tr8mp-fpga
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-rv3028
  • seco_lf-6.6.52-2.2.1-tr8mp-mcu
  • seco_lf-6.6.23-2.0.0_e39-e83-p4-devicetree
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_e88-dev
  • seco_lf-6.6.52-2.2.1_ov5640-mx95-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-rgb-defconfig
  • seco_lf-6.6.52-2.2.1-tr8mp-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-dtbo
  • seco_lf-6.6.52-2.2.1_stm32g0-dev
  • seco_lf-6.6.52-2.2.1_remove-mwifiex_d18
  • seco_lf-6.6.52-2.2.1_e88-dbg-uart-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

spi-fsl-lpspi.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    spi-fsl-lpspi.c 24.38 KiB
    // SPDX-License-Identifier: GPL-2.0+
    //
    // Freescale i.MX7ULP LPSPI driver
    //
    // Copyright 2016 Freescale Semiconductor, Inc.
    
    #include <linux/clk.h>
    #include <linux/completion.h>
    #include <linux/delay.h>
    #include <linux/dmaengine.h>
    #include <linux/dma-mapping.h>
    #include <linux/err.h>
    #include <linux/gpio.h>
    #include <linux/interrupt.h>
    #include <linux/io.h>
    #include <linux/irq.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/of.h>
    #include <linux/of_device.h>
    #include <linux/of_gpio.h>
    #include <linux/pinctrl/consumer.h>
    #include <linux/platform_device.h>
    #include <linux/platform_data/dma-imx.h>
    #include <linux/platform_data/spi-imx.h>
    #include <linux/slab.h>
    #include <linux/spi/spi.h>
    #include <linux/spi/spi_bitbang.h>
    #include <linux/types.h>
    #include <linux/pm_runtime.h>
    
    #define DRIVER_NAME "fsl_lpspi"
    
    #define FSL_LPSPI_RPM_TIMEOUT 50 /* 50ms */
    
    /* The maximum bytes that edma can transfer once.*/
    #define FSL_LPSPI_MAX_EDMA_BYTES  ((1 << 15) - 1)
    
    /* i.MX7ULP LPSPI registers */
    #define IMX7ULP_VERID	0x0
    #define IMX7ULP_PARAM	0x4
    #define IMX7ULP_CR	0x10
    #define IMX7ULP_SR	0x14
    #define IMX7ULP_IER	0x18
    #define IMX7ULP_DER	0x1c
    #define IMX7ULP_CFGR0	0x20
    #define IMX7ULP_CFGR1	0x24
    #define IMX7ULP_DMR0	0x30
    #define IMX7ULP_DMR1	0x34
    #define IMX7ULP_CCR	0x40
    #define IMX7ULP_FCR	0x58
    #define IMX7ULP_FSR	0x5c
    #define IMX7ULP_TCR	0x60
    #define IMX7ULP_TDR	0x64
    #define IMX7ULP_RSR	0x70
    #define IMX7ULP_RDR	0x74
    
    /* General control register field define */
    #define CR_RRF		BIT(9)
    #define CR_RTF		BIT(8)
    #define CR_RST		BIT(1)
    #define CR_MEN		BIT(0)
    #define SR_MBF		BIT(24)
    #define SR_TCF		BIT(10)
    #define SR_FCF		BIT(9)
    #define SR_RDF		BIT(1)
    #define SR_TDF		BIT(0)
    #define IER_TCIE	BIT(10)
    #define IER_FCIE	BIT(9)
    #define IER_RDIE	BIT(1)
    #define IER_TDIE	BIT(0)
    #define DER_RDDE	BIT(1)
    #define DER_TDDE	BIT(0)
    #define CFGR1_PCSCFG	BIT(27)
    #define CFGR1_PINCFG	(BIT(24)|BIT(25))
    #define CFGR1_PCSPOL	BIT(8)
    #define CFGR1_NOSTALL	BIT(3)
    #define CFGR1_MASTER	BIT(0)
    #define FSR_RXCOUNT	(0xFF << 16)
    #define FSR_TXCOUNT	(0xFF)
    #define RSR_RXEMPTY	BIT(1)
    #define TCR_CPOL	BIT(31)
    #define TCR_CPHA	BIT(30)
    #define TCR_CONT	BIT(21)
    #define TCR_CONTC	BIT(20)
    #define TCR_RXMSK	BIT(19)
    #define TCR_TXMSK	BIT(18)
    
    static int clkdivs[] = {1, 2, 4, 8, 16, 32, 64, 128};
    
    struct lpspi_config {
    	u8 bpw;
    	u8 chip_select;
    	u8 prescale;
    	u16 mode;
    	u32 speed_hz;
    };
    
    struct fsl_lpspi_data {
    	struct device *dev;
    	void __iomem *base;
    	unsigned long base_phys;
    	struct clk *clk_ipg;
    	struct clk *clk_per;
    	bool is_slave;
    	bool is_first_byte;
    
    	void *rx_buf;
    	const void *tx_buf;
    	void (*tx)(struct fsl_lpspi_data *);
    	void (*rx)(struct fsl_lpspi_data *);
    
    	u32 remain;
    	u8 watermark;
    	u8 txfifosize;
    	u8 rxfifosize;
    
    	struct lpspi_config config;
    	struct completion xfer_done;
    
    	bool slave_aborted;
    
    	/* DMA */
    	bool usedma;
    	struct completion dma_rx_completion;
    	struct completion dma_tx_completion;
    
    	int chipselect[0];
    };
    
    static const struct of_device_id fsl_lpspi_dt_ids[] = {
    	{ .compatible = "fsl,imx7ulp-spi", },
    	{ /* sentinel */ }
    };
    MODULE_DEVICE_TABLE(of, fsl_lpspi_dt_ids);
    
    #define LPSPI_BUF_RX(type)						\
    static void fsl_lpspi_buf_rx_##type(struct fsl_lpspi_data *fsl_lpspi)	\
    {									\
    	unsigned int val = readl(fsl_lpspi->base + IMX7ULP_RDR);	\
    									\
    	if (fsl_lpspi->rx_buf) {					\
    		*(type *)fsl_lpspi->rx_buf = val;			\
    		fsl_lpspi->rx_buf += sizeof(type);                      \
    	}								\
    }
    
    #define LPSPI_BUF_TX(type)						\
    static void fsl_lpspi_buf_tx_##type(struct fsl_lpspi_data *fsl_lpspi)	\
    {									\
    	type val = 0;							\
    									\
    	if (fsl_lpspi->tx_buf) {					\
    		val = *(type *)fsl_lpspi->tx_buf;			\
    		fsl_lpspi->tx_buf += sizeof(type);			\
    	}								\
    									\
    	fsl_lpspi->remain -= sizeof(type);				\
    	writel(val, fsl_lpspi->base + IMX7ULP_TDR);			\
    }
    
    LPSPI_BUF_RX(u8)
    LPSPI_BUF_TX(u8)
    LPSPI_BUF_RX(u16)
    LPSPI_BUF_TX(u16)
    LPSPI_BUF_RX(u32)
    LPSPI_BUF_TX(u32)
    
    static void fsl_lpspi_intctrl(struct fsl_lpspi_data *fsl_lpspi,
    			      unsigned int enable)
    {
    	writel(enable, fsl_lpspi->base + IMX7ULP_IER);
    }
    
    static int fsl_lpspi_bytes_per_word(const int bpw)
    {
    	return DIV_ROUND_UP(bpw, BITS_PER_BYTE);
    }
    
    static bool fsl_lpspi_can_dma(struct spi_controller *controller,
    			      struct spi_device *spi,
    			      struct spi_transfer *transfer)
    {
    	unsigned int bytes_per_word;
    
    	if (!controller->dma_rx)
    		return false;
    
    	bytes_per_word = fsl_lpspi_bytes_per_word(transfer->bits_per_word);
    	if (bytes_per_word != 1 && bytes_per_word != 2 && bytes_per_word != 4)
    		return false;
    
    	return true;
    }
    
    static int lpspi_prepare_xfer_hardware(struct spi_controller *controller)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    	int ret;
    
    	ret = pm_runtime_get_sync(fsl_lpspi->dev);
    	if (ret < 0) {
    		dev_err(fsl_lpspi->dev, "failed to enable clock\n");
    		return ret;
    	}
    
    	return 0;
    }
    
    static int lpspi_unprepare_xfer_hardware(struct spi_controller *controller)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    
    	pm_runtime_mark_last_busy(fsl_lpspi->dev);
    	pm_runtime_put_autosuspend(fsl_lpspi->dev);
    
    	return 0;
    }
    
    static int fsl_lpspi_prepare_message(struct spi_controller *controller,
    				     struct spi_message *msg)
    {
    	struct fsl_lpspi_data *fsl_lpspi = spi_controller_get_devdata(controller);
    	struct spi_device *spi = msg->spi;
    	int gpio = fsl_lpspi->chipselect[spi->chip_select];
    
    	if (gpio_is_valid(gpio))
    		gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
    
    	return 0;
    }
    
    static void fsl_lpspi_write_tx_fifo(struct fsl_lpspi_data *fsl_lpspi)
    {
    	u8 txfifo_cnt;
    	u32 temp;
    
    	txfifo_cnt = readl(fsl_lpspi->base + IMX7ULP_FSR) & 0xff;
    
    	while (txfifo_cnt < fsl_lpspi->txfifosize) {
    		if (!fsl_lpspi->remain)
    			break;
    		fsl_lpspi->tx(fsl_lpspi);
    		txfifo_cnt++;
    	}
    
    	if (txfifo_cnt < fsl_lpspi->txfifosize) {
    		if (!fsl_lpspi->is_slave) {
    			temp = readl(fsl_lpspi->base + IMX7ULP_TCR);
    			temp &= ~TCR_CONTC;
    			writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
    		}
    
    		fsl_lpspi_intctrl(fsl_lpspi, IER_FCIE);
    	} else
    		fsl_lpspi_intctrl(fsl_lpspi, IER_TDIE);
    }
    
    static void fsl_lpspi_read_rx_fifo(struct fsl_lpspi_data *fsl_lpspi)
    {
    	while (!(readl(fsl_lpspi->base + IMX7ULP_RSR) & RSR_RXEMPTY))
    		fsl_lpspi->rx(fsl_lpspi);
    }
    
    static void fsl_lpspi_set_cmd(struct fsl_lpspi_data *fsl_lpspi)
    {
    	u32 temp = 0;
    
    	if (!fsl_lpspi->is_slave) {
    		temp |= fsl_lpspi->config.bpw - 1;
    		temp |= fsl_lpspi->config.prescale << 27;
    		temp |= (fsl_lpspi->config.mode & 0x3) << 30;
    		temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
    
    		/*
    		 * Set TCR_CONT will keep SS asserted after current transfer.
    		 * For the first transfer, clear TCR_CONTC to assert SS.
    		 * For subsequent transfer, set TCR_CONTC to keep SS asserted.
    		 */
    		if (!fsl_lpspi->usedma) {
    			temp |= TCR_CONT;
    			if (fsl_lpspi->is_first_byte)
    				temp &= ~TCR_CONTC;
    			else
    				temp |= TCR_CONTC;
    		}
    	} else {
    		temp |= fsl_lpspi->config.bpw - 1;
    		temp |= (fsl_lpspi->config.mode & 0x3) << 30;
    	}
    	writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
    
    	dev_dbg(fsl_lpspi->dev, "TCR=0x%x\n", temp);
    }
    
    static void fsl_lpspi_set_watermark(struct fsl_lpspi_data *fsl_lpspi)
    {
    	u32 temp;
    
    	if (!fsl_lpspi->usedma)
    		temp = fsl_lpspi->watermark >> 1 |
    		       (fsl_lpspi->watermark >> 1) << 16;
    	else
    		temp = fsl_lpspi->watermark >> 1;
    
    	writel(temp, fsl_lpspi->base + IMX7ULP_FCR);
    
    	dev_dbg(fsl_lpspi->dev, "FCR=0x%x\n", temp);
    }
    
    static int fsl_lpspi_set_bitrate(struct fsl_lpspi_data *fsl_lpspi)
    {
    	struct lpspi_config config = fsl_lpspi->config;
    	unsigned int perclk_rate, scldiv;
    	u8 prescale;
    
    	perclk_rate = clk_get_rate(fsl_lpspi->clk_per);
    
    	if (config.speed_hz > perclk_rate / 2) {
    		dev_err(fsl_lpspi->dev,
    		      "per-clk should be at least two times of transfer speed");
    		return -EINVAL;
    	}
    
    	for (prescale = 0; prescale < 8; prescale++) {
    		scldiv = perclk_rate /
    			 (clkdivs[prescale] * config.speed_hz) - 2;
    		if (scldiv < 256) {
    			fsl_lpspi->config.prescale = prescale;
    			break;
    		}
    	}
    
    	if (prescale == 8 && scldiv >= 256)
    		return -EINVAL;
    
    	writel(scldiv | (scldiv << 8) | ((scldiv >> 1) << 16),
    					fsl_lpspi->base + IMX7ULP_CCR);
    
    	dev_dbg(fsl_lpspi->dev, "perclk=%d, speed=%d, prescale=%d, scldiv=%d\n",
    		perclk_rate, config.speed_hz, prescale, scldiv);
    
    	return 0;
    }
    
    static int fsl_lpspi_dma_configure(struct spi_controller *controller)
    {
    	int ret;
    	enum dma_slave_buswidth buswidth;
    	struct dma_slave_config rx = {}, tx = {};
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    
    	switch (fsl_lpspi_bytes_per_word(fsl_lpspi->config.bpw)) {
    	case 4:
    		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
    		break;
    	case 2:
    		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
    		break;
    	case 1:
    		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	tx.direction = DMA_MEM_TO_DEV;
    	tx.dst_addr = fsl_lpspi->base_phys + IMX7ULP_TDR;
    	tx.dst_addr_width = buswidth;
    	tx.dst_maxburst = 1;
    	ret = dmaengine_slave_config(controller->dma_tx, &tx);
    	if (ret) {
    		dev_err(fsl_lpspi->dev, "TX dma configuration failed with %d\n",
    			ret);
    		return ret;
    	}
    
    	rx.direction = DMA_DEV_TO_MEM;
    	rx.src_addr = fsl_lpspi->base_phys + IMX7ULP_RDR;
    	rx.src_addr_width = buswidth;
    	rx.src_maxburst = 1;
    	ret = dmaengine_slave_config(controller->dma_rx, &rx);
    	if (ret) {
    		dev_err(fsl_lpspi->dev, "RX dma configuration failed with %d\n",
    			ret);
    		return ret;
    	}
    
    	return 0;
    }
    
    static int fsl_lpspi_config(struct fsl_lpspi_data *fsl_lpspi)
    {
    	u32 temp;
    	int ret;
    
    	if (!fsl_lpspi->is_slave) {
    		ret = fsl_lpspi_set_bitrate(fsl_lpspi);
    		if (ret)
    			return ret;
    	}
    
    	fsl_lpspi_set_watermark(fsl_lpspi);
    
    	if (!fsl_lpspi->is_slave)
    		temp = CFGR1_MASTER;
    	else
    		temp = CFGR1_PINCFG;
    	if (fsl_lpspi->config.mode & SPI_CS_HIGH)
    		temp |= CFGR1_PCSPOL;
    	writel(temp, fsl_lpspi->base + IMX7ULP_CFGR1);
    
    	temp = readl(fsl_lpspi->base + IMX7ULP_CR);
    	temp |= CR_RRF | CR_RTF | CR_MEN;
    	writel(temp, fsl_lpspi->base + IMX7ULP_CR);
    
    	temp = 0;
    	if (fsl_lpspi->usedma)
    		temp = DER_TDDE | DER_RDDE;
    	writel(temp, fsl_lpspi->base + IMX7ULP_DER);
    
    	return 0;
    }
    
    static int fsl_lpspi_setup_transfer(struct spi_controller *controller,
    				     struct spi_device *spi,
    				     struct spi_transfer *t)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(spi->controller);
    
    	if (t == NULL)
    		return -EINVAL;
    
    	fsl_lpspi->config.mode = spi->mode;
    	fsl_lpspi->config.bpw = t->bits_per_word;
    	fsl_lpspi->config.speed_hz = t->speed_hz;
    	fsl_lpspi->config.chip_select = spi->chip_select;
    
    	if (!fsl_lpspi->config.speed_hz)
    		fsl_lpspi->config.speed_hz = spi->max_speed_hz;
    	if (!fsl_lpspi->config.bpw)
    		fsl_lpspi->config.bpw = spi->bits_per_word;
    
    	/* Initialize the functions for transfer */
    	if (fsl_lpspi->config.bpw <= 8) {
    		fsl_lpspi->rx = fsl_lpspi_buf_rx_u8;
    		fsl_lpspi->tx = fsl_lpspi_buf_tx_u8;
    	} else if (fsl_lpspi->config.bpw <= 16) {
    		fsl_lpspi->rx = fsl_lpspi_buf_rx_u16;
    		fsl_lpspi->tx = fsl_lpspi_buf_tx_u16;
    	} else {
    		fsl_lpspi->rx = fsl_lpspi_buf_rx_u32;
    		fsl_lpspi->tx = fsl_lpspi_buf_tx_u32;
    	}
    
    	if (t->len <= fsl_lpspi->txfifosize)
    		fsl_lpspi->watermark = t->len;
    	else
    		fsl_lpspi->watermark = fsl_lpspi->txfifosize;
    
    	if (fsl_lpspi_can_dma(controller, spi, t))
    		fsl_lpspi->usedma = 1;
    	else
    		fsl_lpspi->usedma = 0;
    
    	return fsl_lpspi_config(fsl_lpspi);
    }
    
    static int fsl_lpspi_slave_abort(struct spi_controller *controller)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    
    	fsl_lpspi->slave_aborted = true;
    	complete(&fsl_lpspi->xfer_done);
    	return 0;
    }
    
    static int fsl_lpspi_wait_for_completion(struct spi_controller *controller)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    
    	if (fsl_lpspi->is_slave) {
    		if (wait_for_completion_interruptible(&fsl_lpspi->xfer_done) ||
    			fsl_lpspi->slave_aborted) {
    			dev_dbg(fsl_lpspi->dev, "interrupted\n");
    			return -EINTR;
    		}
    	} else {
    		if (!wait_for_completion_timeout(&fsl_lpspi->xfer_done, HZ)) {
    			dev_dbg(fsl_lpspi->dev, "wait for completion timeout\n");
    			return -ETIMEDOUT;
    		}
    	}
    
    	return 0;
    }
    
    static int fsl_lpspi_reset(struct fsl_lpspi_data *fsl_lpspi)
    {
    	u32 temp;
    
    	if (!fsl_lpspi->usedma) {
    		/* Disable all interrupt */
    		fsl_lpspi_intctrl(fsl_lpspi, 0);
    	}
    
    	/* W1C for all flags in SR */
    	temp = 0x3F << 8;
    	writel(temp, fsl_lpspi->base + IMX7ULP_SR);
    
    	/* Clear FIFO and disable module */
    	temp = CR_RRF | CR_RTF;
    	writel(temp, fsl_lpspi->base + IMX7ULP_CR);
    
    	return 0;
    }
    
    static void fsl_lpspi_dma_rx_callback(void *cookie)
    {
    	struct fsl_lpspi_data *fsl_lpspi = (struct fsl_lpspi_data *)cookie;
    
    	complete(&fsl_lpspi->dma_rx_completion);
    }
    
    static void fsl_lpspi_dma_tx_callback(void *cookie)
    {
    	struct fsl_lpspi_data *fsl_lpspi = (struct fsl_lpspi_data *)cookie;
    
    	complete(&fsl_lpspi->dma_tx_completion);
    }
    
    static int fsl_lpspi_calculate_timeout(struct fsl_lpspi_data *fsl_lpspi,
    				       int size)
    {
    	unsigned long timeout = 0;
    
    	/* Time with actual data transfer and CS change delay related to HW */
    	timeout = (8 + 4) * size / fsl_lpspi->config.speed_hz;
    
    	/* Add extra second for scheduler related activities */
    	timeout += 1;
    
    	/* Double calculated timeout */
    	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
    }
    
    static int fsl_lpspi_dma_transfer(struct spi_controller *controller,
    				struct fsl_lpspi_data *fsl_lpspi,
    				struct spi_transfer *transfer)
    {
    	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
    	unsigned long transfer_timeout;
    	unsigned long timeout;
    	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
    	int ret;
    
    	ret = fsl_lpspi_dma_configure(controller);
    	if (ret)
    		return ret;
    
    	desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
    				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
    				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    	if (!desc_rx)
    		return -EINVAL;
    
    	desc_rx->callback = fsl_lpspi_dma_rx_callback;
    	desc_rx->callback_param = (void *)fsl_lpspi;
    	dmaengine_submit(desc_rx);
    	reinit_completion(&fsl_lpspi->dma_rx_completion);
    	dma_async_issue_pending(controller->dma_rx);
    
    	desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
    				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
    				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    	if (!desc_tx) {
    		dmaengine_terminate_all(controller->dma_tx);
    		return -EINVAL;
    	}
    
    	desc_tx->callback = fsl_lpspi_dma_tx_callback;
    	desc_tx->callback_param = (void *)fsl_lpspi;
    	dmaengine_submit(desc_tx);
    	reinit_completion(&fsl_lpspi->dma_tx_completion);
    	dma_async_issue_pending(controller->dma_tx);
    
    	fsl_lpspi->slave_aborted = false;
    
    	if (!fsl_lpspi->is_slave) {
    		transfer_timeout = fsl_lpspi_calculate_timeout(fsl_lpspi,
    							       transfer->len);
    
    		/* Wait eDMA to finish the data transfer.*/
    		timeout = wait_for_completion_timeout(&fsl_lpspi->dma_tx_completion,
    						      transfer_timeout);
    		if (!timeout) {
    			dev_err(fsl_lpspi->dev, "I/O Error in DMA TX\n");
    			dmaengine_terminate_all(controller->dma_tx);
    			dmaengine_terminate_all(controller->dma_rx);
    			fsl_lpspi_reset(fsl_lpspi);
    			return -ETIMEDOUT;
    		}
    
    		timeout = wait_for_completion_timeout(&fsl_lpspi->dma_rx_completion,
    						      transfer_timeout);
    		if (!timeout) {
    			dev_err(fsl_lpspi->dev, "I/O Error in DMA RX\n");
    			dmaengine_terminate_all(controller->dma_tx);
    			dmaengine_terminate_all(controller->dma_rx);
    			fsl_lpspi_reset(fsl_lpspi);
    			return -ETIMEDOUT;
    		}
    	} else {
    		if (wait_for_completion_interruptible(&fsl_lpspi->dma_tx_completion) ||
    			fsl_lpspi->slave_aborted) {
    			dev_dbg(fsl_lpspi->dev,
    				"I/O Error in DMA TX interrupted\n");
    			dmaengine_terminate_all(controller->dma_tx);
    			dmaengine_terminate_all(controller->dma_rx);
    			fsl_lpspi_reset(fsl_lpspi);
    			return -EINTR;
    		}
    
    		if (wait_for_completion_interruptible(&fsl_lpspi->dma_rx_completion) ||
    			fsl_lpspi->slave_aborted) {
    			dev_dbg(fsl_lpspi->dev,
    				"I/O Error in DMA RX interrupted\n");
    			dmaengine_terminate_all(controller->dma_tx);
    			dmaengine_terminate_all(controller->dma_rx);
    			fsl_lpspi_reset(fsl_lpspi);
    			return -EINTR;
    		}
    	}
    
    	fsl_lpspi_reset(fsl_lpspi);
    
    	return 0;
    }
    
    static void fsl_lpspi_dma_exit(struct spi_controller *controller)
    {
    	if (controller->dma_rx) {
    		dma_release_channel(controller->dma_rx);
    		controller->dma_rx = NULL;
    	}
    
    	if (controller->dma_tx) {
    		dma_release_channel(controller->dma_tx);
    		controller->dma_tx = NULL;
    	}
    }
    
    static int fsl_lpspi_dma_init(struct device *dev,
    			      struct fsl_lpspi_data *fsl_lpspi,
    			      struct spi_controller *controller)
    {
    	int ret;
    
    	/* Prepare for TX DMA: */
    	controller->dma_tx = dma_request_slave_channel_reason(dev, "tx");
    	if (IS_ERR(controller->dma_tx)) {
    		ret = PTR_ERR(controller->dma_tx);
    		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
    		controller->dma_tx = NULL;
    		goto err;
    	}
    
    	/* Prepare for RX DMA: */
    	controller->dma_rx = dma_request_slave_channel_reason(dev, "rx");
    	if (IS_ERR(controller->dma_rx)) {
    		ret = PTR_ERR(controller->dma_rx);
    		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
    		controller->dma_rx = NULL;
    		goto err;
    	}
    
    	init_completion(&fsl_lpspi->dma_rx_completion);
    	init_completion(&fsl_lpspi->dma_tx_completion);
    	controller->can_dma = fsl_lpspi_can_dma;
    	controller->max_dma_len = FSL_LPSPI_MAX_EDMA_BYTES;
    
    	return 0;
    err:
    	fsl_lpspi_dma_exit(controller);
    	return ret;
    }
    
    static int fsl_lpspi_pio_transfer(struct spi_controller *controller,
    				  struct spi_transfer *t)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    	int ret;
    
    	fsl_lpspi->tx_buf = t->tx_buf;
    	fsl_lpspi->rx_buf = t->rx_buf;
    	fsl_lpspi->remain = t->len;
    
    	reinit_completion(&fsl_lpspi->xfer_done);
    	fsl_lpspi->slave_aborted = false;
    
    	fsl_lpspi_write_tx_fifo(fsl_lpspi);
    
    	ret = fsl_lpspi_wait_for_completion(controller);
    	if (ret)
    		return ret;
    
    	fsl_lpspi_reset(fsl_lpspi);
    
    	return 0;
    }
    
    static int fsl_lpspi_transfer_one(struct spi_controller *controller,
    				  struct spi_device *spi,
    				  struct spi_transfer *t)
    {
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    	int ret;
    
    	fsl_lpspi->is_first_byte = true;
    	ret = fsl_lpspi_setup_transfer(controller, spi, t);
    	if (ret < 0)
    		return ret;
    
    	fsl_lpspi_set_cmd(fsl_lpspi);
    	fsl_lpspi->is_first_byte = false;
    
    	if (fsl_lpspi->usedma)
    		ret = fsl_lpspi_dma_transfer(controller, fsl_lpspi, t);
    	else
    		ret = fsl_lpspi_pio_transfer(controller, t);
    	if (ret < 0)
    		return ret;
    
    	return 0;
    }
    
    static irqreturn_t fsl_lpspi_isr(int irq, void *dev_id)
    {
    	u32 temp_SR, temp_IER;
    	struct fsl_lpspi_data *fsl_lpspi = dev_id;
    
    	temp_IER = readl(fsl_lpspi->base + IMX7ULP_IER);
    	fsl_lpspi_intctrl(fsl_lpspi, 0);
    	temp_SR = readl(fsl_lpspi->base + IMX7ULP_SR);
    
    	fsl_lpspi_read_rx_fifo(fsl_lpspi);
    
    	if ((temp_SR & SR_TDF) && (temp_IER & IER_TDIE)) {
    		fsl_lpspi_write_tx_fifo(fsl_lpspi);
    		return IRQ_HANDLED;
    	}
    
    	if (temp_SR & SR_MBF ||
    	    readl(fsl_lpspi->base + IMX7ULP_FSR) & FSR_TXCOUNT) {
    		writel(SR_FCF, fsl_lpspi->base + IMX7ULP_SR);
    		fsl_lpspi_intctrl(fsl_lpspi, IER_FCIE);
    		return IRQ_HANDLED;
    	}
    
    	if (temp_SR & SR_FCF && (temp_IER & IER_FCIE)) {
    		writel(SR_FCF, fsl_lpspi->base + IMX7ULP_SR);
    		complete(&fsl_lpspi->xfer_done);
    		return IRQ_HANDLED;
    	}
    
    	return IRQ_NONE;
    }
    
    int fsl_lpspi_runtime_resume(struct device *dev)
    {
    	struct fsl_lpspi_data *fsl_lpspi = dev_get_drvdata(dev);
    	int ret;
    
    	ret = clk_prepare_enable(fsl_lpspi->clk_per);
    	if (ret)
    		return ret;
    
    	ret = clk_prepare_enable(fsl_lpspi->clk_ipg);
    	if (ret) {
    		clk_disable_unprepare(fsl_lpspi->clk_per);
    		return ret;
    	}
    
    	return 0;
    }
    
    int fsl_lpspi_runtime_suspend(struct device *dev)
    {
    	struct fsl_lpspi_data *fsl_lpspi = dev_get_drvdata(dev);
    
    	clk_disable_unprepare(fsl_lpspi->clk_per);
    	clk_disable_unprepare(fsl_lpspi->clk_ipg);
    
    	return 0;
    }
    
    static int fsl_lpspi_init_rpm(struct fsl_lpspi_data *fsl_lpspi)
    {
    	struct device *dev = fsl_lpspi->dev;
    
    	pm_runtime_enable(dev);
    	pm_runtime_set_autosuspend_delay(dev, FSL_LPSPI_RPM_TIMEOUT);
    	pm_runtime_use_autosuspend(dev);
    
    	return 0;
    }
    
    static int fsl_lpspi_probe(struct platform_device *pdev)
    {
    	struct device_node *np = pdev->dev.of_node;
    	struct fsl_lpspi_data *fsl_lpspi;
    	struct spi_controller *controller;
    	struct spi_imx_master *lpspi_platform_info =
    		dev_get_platdata(&pdev->dev);
    	struct resource *res;
    	int i, ret, irq;
    	u32 temp;
    
    	if (of_property_read_bool((&pdev->dev)->of_node, "spi-slave"))
    		controller = spi_alloc_slave(&pdev->dev,
    					sizeof(struct fsl_lpspi_data));
    	else
    		controller = spi_alloc_master(&pdev->dev,
    					sizeof(struct fsl_lpspi_data));
    
    	if (!controller)
    		return -ENOMEM;
    
    	platform_set_drvdata(pdev, controller);
    
    	controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
    	controller->bus_num = pdev->id;
    
    	fsl_lpspi = spi_controller_get_devdata(controller);
    	fsl_lpspi->dev = &pdev->dev;
    	dev_set_drvdata(&pdev->dev, fsl_lpspi);
    	fsl_lpspi->is_slave = of_property_read_bool((&pdev->dev)->of_node,
    						    "spi-slave");
    
    	if (!fsl_lpspi->is_slave) {
    		for (i = 0; i < controller->num_chipselect; i++) {
    			int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
    
    			if (!gpio_is_valid(cs_gpio) && lpspi_platform_info)
    				cs_gpio = lpspi_platform_info->chipselect[i];
    
    			fsl_lpspi->chipselect[i] = cs_gpio;
    			if (!gpio_is_valid(cs_gpio))
    				continue;
    
    			ret = devm_gpio_request(&pdev->dev, fsl_lpspi->chipselect[i],
    						DRIVER_NAME);
    			if (ret) {
    				dev_err(&pdev->dev, "can't get cs gpios\n");
    				goto out_controller_put;
    			}
    		}
    		controller->cs_gpios = fsl_lpspi->chipselect;
    		controller->prepare_message = fsl_lpspi_prepare_message;
    	}
    
    	controller->transfer_one = fsl_lpspi_transfer_one;
    	controller->prepare_transfer_hardware = lpspi_prepare_xfer_hardware;
    	controller->unprepare_transfer_hardware = lpspi_unprepare_xfer_hardware;
    	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
    	controller->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
    	controller->dev.of_node = pdev->dev.of_node;
    	controller->bus_num = pdev->id;
    	controller->slave_abort = fsl_lpspi_slave_abort;
    
    	init_completion(&fsl_lpspi->xfer_done);
    
    	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    	fsl_lpspi->base = devm_ioremap_resource(&pdev->dev, res);
    	if (IS_ERR(fsl_lpspi->base)) {
    		ret = PTR_ERR(fsl_lpspi->base);
    		goto out_controller_put;
    	}
    	fsl_lpspi->base_phys = res->start;
    
    	irq = platform_get_irq(pdev, 0);
    	if (irq < 0) {
    		ret = irq;
    		goto out_controller_put;
    	}
    
    	ret = devm_request_irq(&pdev->dev, irq, fsl_lpspi_isr, 0,
    			       dev_name(&pdev->dev), fsl_lpspi);
    	if (ret) {
    		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
    		goto out_controller_put;
    	}
    
    	fsl_lpspi->clk_per = devm_clk_get(&pdev->dev, "per");
    	if (IS_ERR(fsl_lpspi->clk_per)) {
    		ret = PTR_ERR(fsl_lpspi->clk_per);
    		goto out_controller_put;
    	}
    
    	fsl_lpspi->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
    	if (IS_ERR(fsl_lpspi->clk_ipg)) {
    		ret = PTR_ERR(fsl_lpspi->clk_ipg);
    		goto out_controller_put;
    	}
    
    	/* enable the clock */
    	ret = fsl_lpspi_init_rpm(fsl_lpspi);
    	if (ret)
    		goto out_controller_put;
    
    	ret = pm_runtime_get_sync(fsl_lpspi->dev);
    	if (ret < 0) {
    		dev_err(fsl_lpspi->dev, "failed to enable clock\n");
    		return ret;
    	}
    
    	temp = readl(fsl_lpspi->base + IMX7ULP_PARAM);
    	fsl_lpspi->txfifosize = 1 << (temp & 0x0f);
    	fsl_lpspi->rxfifosize = 1 << ((temp >> 8) & 0x0f);
    
    	ret = fsl_lpspi_dma_init(&pdev->dev, fsl_lpspi, controller);
    	if (ret == -EPROBE_DEFER)
    		goto out_controller_put;
    
    	if (ret < 0)
    		dev_err(&pdev->dev, "dma setup error %d, use pio\n", ret);
    
    	ret = devm_spi_register_controller(&pdev->dev, controller);
    	if (ret < 0) {
    		dev_err(&pdev->dev, "spi_register_controller error.\n");
    		goto out_controller_put;
    	}
    
    	return 0;
    
    out_controller_put:
    	spi_controller_put(controller);
    
    	return ret;
    }
    
    static int fsl_lpspi_remove(struct platform_device *pdev)
    {
    	struct spi_controller *controller = platform_get_drvdata(pdev);
    	struct fsl_lpspi_data *fsl_lpspi =
    				spi_controller_get_devdata(controller);
    
    	pm_runtime_disable(fsl_lpspi->dev);
    
    	spi_master_put(controller);
    
    	return 0;
    }
    
    #ifdef CONFIG_PM_SLEEP
    static int fsl_lpspi_suspend(struct device *dev)
    {
    	int ret;
    
    	pinctrl_pm_select_sleep_state(dev);
    	ret = pm_runtime_force_suspend(dev);
    	return ret;
    }
    
    static int fsl_lpspi_resume(struct device *dev)
    {
    	int ret;
    
    	ret = pm_runtime_force_resume(dev);
    	if (ret) {
    		dev_err(dev, "Error in resume: %d\n", ret);
    		return ret;
    	}
    
    	pinctrl_pm_select_default_state(dev);
    
    	return 0;
    }
    #endif /* CONFIG_PM_SLEEP */
    
    static const struct dev_pm_ops fsl_lpspi_pm_ops = {
    	SET_RUNTIME_PM_OPS(fsl_lpspi_runtime_suspend,
    				fsl_lpspi_runtime_resume, NULL)
    	SET_SYSTEM_SLEEP_PM_OPS(fsl_lpspi_suspend, fsl_lpspi_resume)
    };
    
    static struct platform_driver fsl_lpspi_driver = {
    	.driver = {
    		.name = DRIVER_NAME,
    		.of_match_table = fsl_lpspi_dt_ids,
    		.pm = &fsl_lpspi_pm_ops,
    	},
    	.probe = fsl_lpspi_probe,
    	.remove = fsl_lpspi_remove,
    };
    module_platform_driver(fsl_lpspi_driver);
    
    MODULE_DESCRIPTION("LPSPI Controller driver");
    MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
    MODULE_LICENSE("GPL");