Skip to content
Snippets Groups Projects
Select Git revision
  • 86cfd3a45042ab242d47f3935a02811a402beab6
  • seco_lf-6.6.52-2.2.1 default protected
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/oleksii/fix-mtk-misc-artifacts/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-dtb
  • seco_lf-6.6.52-2.2.1-tr8mp-fpga
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-rv3028
  • seco_lf-6.6.52-2.2.1-tr8mp-mcu
  • seco_lf-6.6.23-2.0.0_e39-e83-p4-devicetree
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_e88-dev
  • seco_lf-6.6.52-2.2.1_ov5640-mx95-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-rgb-defconfig
  • seco_lf-6.6.52-2.2.1-tr8mp-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-dtbo
  • seco_lf-6.6.52-2.2.1_stm32g0-dev
  • seco_lf-6.6.52-2.2.1_remove-mwifiex_d18
  • seco_lf-6.6.52-2.2.1_e88-dbg-uart-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

vmscan.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    vmscan.c 98.20 KiB
    /*
     *  linux/mm/vmscan.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Swap reorganised 29.12.95, Stephen Tweedie.
     *  kswapd added: 7.1.96  sct
     *  Removed kswapd_ctl limits, and swap out as many pages as needed
     *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
     *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
     *  Multiqueue VM started 5.8.00, Rik van Riel.
     */
    
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/gfp.h>
    #include <linux/kernel_stat.h>
    #include <linux/swap.h>
    #include <linux/pagemap.h>
    #include <linux/init.h>
    #include <linux/highmem.h>
    #include <linux/vmstat.h>
    #include <linux/file.h>
    #include <linux/writeback.h>
    #include <linux/blkdev.h>
    #include <linux/buffer_head.h>	/* for try_to_release_page(),
    					buffer_heads_over_limit */
    #include <linux/mm_inline.h>
    #include <linux/pagevec.h>
    #include <linux/backing-dev.h>
    #include <linux/rmap.h>
    #include <linux/topology.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/compaction.h>
    #include <linux/notifier.h>
    #include <linux/rwsem.h>
    #include <linux/delay.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/memcontrol.h>
    #include <linux/delayacct.h>
    #include <linux/sysctl.h>
    #include <linux/oom.h>
    #include <linux/prefetch.h>
    
    #include <asm/tlbflush.h>
    #include <asm/div64.h>
    
    #include <linux/swapops.h>
    
    #include "internal.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/vmscan.h>
    
    /*
     * reclaim_mode determines how the inactive list is shrunk
     * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
     * RECLAIM_MODE_ASYNC:  Do not block
     * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
     * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
     *			page from the LRU and reclaim all pages within a
     *			naturally aligned range
     * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
     *			order-0 pages and then compact the zone
     */
    typedef unsigned __bitwise__ reclaim_mode_t;
    #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
    #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
    #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
    #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
    #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
    
    struct scan_control {
    	/* Incremented by the number of inactive pages that were scanned */
    	unsigned long nr_scanned;
    
    	/* Number of pages freed so far during a call to shrink_zones() */
    	unsigned long nr_reclaimed;
    
    	/* How many pages shrink_list() should reclaim */
    	unsigned long nr_to_reclaim;
    
    	unsigned long hibernation_mode;
    
    	/* This context's GFP mask */
    	gfp_t gfp_mask;
    
    	int may_writepage;
    
    	/* Can mapped pages be reclaimed? */
    	int may_unmap;
    
    	/* Can pages be swapped as part of reclaim? */
    	int may_swap;
    
    	int order;
    
    	/*
    	 * Intend to reclaim enough continuous memory rather than reclaim
    	 * enough amount of memory. i.e, mode for high order allocation.
    	 */
    	reclaim_mode_t reclaim_mode;
    
    	/* Which cgroup do we reclaim from */
    	struct mem_cgroup *mem_cgroup;
    
    	/*
    	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
    	 * are scanned.
    	 */
    	nodemask_t	*nodemask;
    };
    
    #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
    
    #ifdef ARCH_HAS_PREFETCH
    #define prefetch_prev_lru_page(_page, _base, _field)			\
    	do {								\
    		if ((_page)->lru.prev != _base) {			\
    			struct page *prev;				\
    									\
    			prev = lru_to_page(&(_page->lru));		\
    			prefetch(&prev->_field);			\
    		}							\
    	} while (0)
    #else
    #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
    #endif
    
    #ifdef ARCH_HAS_PREFETCHW
    #define prefetchw_prev_lru_page(_page, _base, _field)			\
    	do {								\
    		if ((_page)->lru.prev != _base) {			\
    			struct page *prev;				\
    									\
    			prev = lru_to_page(&(_page->lru));		\
    			prefetchw(&prev->_field);			\
    		}							\
    	} while (0)
    #else
    #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
    #endif
    
    /*
     * From 0 .. 100.  Higher means more swappy.
     */
    int vm_swappiness = 60;
    long vm_total_pages;	/* The total number of pages which the VM controls */
    
    static LIST_HEAD(shrinker_list);
    static DECLARE_RWSEM(shrinker_rwsem);
    
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR
    #define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
    #else
    #define scanning_global_lru(sc)	(1)
    #endif
    
    static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
    						  struct scan_control *sc)
    {
    	if (!scanning_global_lru(sc))
    		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
    
    	return &zone->reclaim_stat;
    }
    
    static unsigned long zone_nr_lru_pages(struct zone *zone,
    				struct scan_control *sc, enum lru_list lru)
    {
    	if (!scanning_global_lru(sc))
    		return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
    				zone_to_nid(zone), zone_idx(zone), BIT(lru));
    
    	return zone_page_state(zone, NR_LRU_BASE + lru);
    }
    
    
    /*
     * Add a shrinker callback to be called from the vm
     */
    void register_shrinker(struct shrinker *shrinker)
    {
    	atomic_long_set(&shrinker->nr_in_batch, 0);
    	down_write(&shrinker_rwsem);
    	list_add_tail(&shrinker->list, &shrinker_list);
    	up_write(&shrinker_rwsem);
    }
    EXPORT_SYMBOL(register_shrinker);
    
    /*
     * Remove one
     */
    void unregister_shrinker(struct shrinker *shrinker)
    {
    	down_write(&shrinker_rwsem);
    	list_del(&shrinker->list);
    	up_write(&shrinker_rwsem);
    }
    EXPORT_SYMBOL(unregister_shrinker);
    
    static inline int do_shrinker_shrink(struct shrinker *shrinker,
    				     struct shrink_control *sc,
    				     unsigned long nr_to_scan)
    {
    	sc->nr_to_scan = nr_to_scan;
    	return (*shrinker->shrink)(shrinker, sc);
    }
    
    #define SHRINK_BATCH 128
    /*
     * Call the shrink functions to age shrinkable caches
     *
     * Here we assume it costs one seek to replace a lru page and that it also
     * takes a seek to recreate a cache object.  With this in mind we age equal
     * percentages of the lru and ageable caches.  This should balance the seeks
     * generated by these structures.
     *
     * If the vm encountered mapped pages on the LRU it increase the pressure on
     * slab to avoid swapping.
     *
     * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
     *
     * `lru_pages' represents the number of on-LRU pages in all the zones which
     * are eligible for the caller's allocation attempt.  It is used for balancing
     * slab reclaim versus page reclaim.
     *
     * Returns the number of slab objects which we shrunk.
     */
    unsigned long shrink_slab(struct shrink_control *shrink,
    			  unsigned long nr_pages_scanned,
    			  unsigned long lru_pages)
    {
    	struct shrinker *shrinker;
    	unsigned long ret = 0;
    
    	if (nr_pages_scanned == 0)
    		nr_pages_scanned = SWAP_CLUSTER_MAX;
    
    	if (!down_read_trylock(&shrinker_rwsem)) {
    		/* Assume we'll be able to shrink next time */
    		ret = 1;
    		goto out;
    	}
    
    	list_for_each_entry(shrinker, &shrinker_list, list) {
    		unsigned long long delta;
    		long total_scan;
    		long max_pass;
    		int shrink_ret = 0;
    		long nr;
    		long new_nr;
    		long batch_size = shrinker->batch ? shrinker->batch
    						  : SHRINK_BATCH;
    
    		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
    		if (max_pass <= 0)
    			continue;
    
    		/*
    		 * copy the current shrinker scan count into a local variable
    		 * and zero it so that other concurrent shrinker invocations
    		 * don't also do this scanning work.
    		 */
    		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
    
    		total_scan = nr;
    		delta = (4 * nr_pages_scanned) / shrinker->seeks;
    		delta *= max_pass;
    		do_div(delta, lru_pages + 1);
    		total_scan += delta;
    		if (total_scan < 0) {
    			printk(KERN_ERR "shrink_slab: %pF negative objects to "
    			       "delete nr=%ld\n",
    			       shrinker->shrink, total_scan);
    			total_scan = max_pass;
    		}
    
    		/*
    		 * We need to avoid excessive windup on filesystem shrinkers
    		 * due to large numbers of GFP_NOFS allocations causing the
    		 * shrinkers to return -1 all the time. This results in a large
    		 * nr being built up so when a shrink that can do some work
    		 * comes along it empties the entire cache due to nr >>>
    		 * max_pass.  This is bad for sustaining a working set in
    		 * memory.
    		 *
    		 * Hence only allow the shrinker to scan the entire cache when
    		 * a large delta change is calculated directly.
    		 */
    		if (delta < max_pass / 4)
    			total_scan = min(total_scan, max_pass / 2);
    
    		/*
    		 * Avoid risking looping forever due to too large nr value:
    		 * never try to free more than twice the estimate number of
    		 * freeable entries.
    		 */
    		if (total_scan > max_pass * 2)
    			total_scan = max_pass * 2;
    
    		trace_mm_shrink_slab_start(shrinker, shrink, nr,
    					nr_pages_scanned, lru_pages,
    					max_pass, delta, total_scan);
    
    		while (total_scan >= batch_size) {
    			int nr_before;
    
    			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
    			shrink_ret = do_shrinker_shrink(shrinker, shrink,
    							batch_size);
    			if (shrink_ret == -1)
    				break;
    			if (shrink_ret < nr_before)
    				ret += nr_before - shrink_ret;
    			count_vm_events(SLABS_SCANNED, batch_size);
    			total_scan -= batch_size;
    
    			cond_resched();
    		}
    
    		/*
    		 * move the unused scan count back into the shrinker in a
    		 * manner that handles concurrent updates. If we exhausted the
    		 * scan, there is no need to do an update.
    		 */
    		if (total_scan > 0)
    			new_nr = atomic_long_add_return(total_scan,
    					&shrinker->nr_in_batch);
    		else
    			new_nr = atomic_long_read(&shrinker->nr_in_batch);
    
    		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
    	}
    	up_read(&shrinker_rwsem);
    out:
    	cond_resched();
    	return ret;
    }
    
    static void set_reclaim_mode(int priority, struct scan_control *sc,
    				   bool sync)
    {
    	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
    
    	/*
    	 * Initially assume we are entering either lumpy reclaim or
    	 * reclaim/compaction.Depending on the order, we will either set the
    	 * sync mode or just reclaim order-0 pages later.
    	 */
    	if (COMPACTION_BUILD)
    		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
    	else
    		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
    
    	/*
    	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
    	 * restricting when its set to either costly allocations or when
    	 * under memory pressure
    	 */
    	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
    		sc->reclaim_mode |= syncmode;
    	else if (sc->order && priority < DEF_PRIORITY - 2)
    		sc->reclaim_mode |= syncmode;
    	else
    		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
    }
    
    static void reset_reclaim_mode(struct scan_control *sc)
    {
    	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
    }
    
    static inline int is_page_cache_freeable(struct page *page)
    {
    	/*
    	 * A freeable page cache page is referenced only by the caller
    	 * that isolated the page, the page cache radix tree and
    	 * optional buffer heads at page->private.
    	 */
    	return page_count(page) - page_has_private(page) == 2;
    }
    
    static int may_write_to_queue(struct backing_dev_info *bdi,
    			      struct scan_control *sc)
    {
    	if (current->flags & PF_SWAPWRITE)
    		return 1;
    	if (!bdi_write_congested(bdi))
    		return 1;
    	if (bdi == current->backing_dev_info)
    		return 1;
    
    	/* lumpy reclaim for hugepage often need a lot of write */
    	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
    		return 1;
    	return 0;
    }
    
    /*
     * We detected a synchronous write error writing a page out.  Probably
     * -ENOSPC.  We need to propagate that into the address_space for a subsequent
     * fsync(), msync() or close().
     *
     * The tricky part is that after writepage we cannot touch the mapping: nothing
     * prevents it from being freed up.  But we have a ref on the page and once
     * that page is locked, the mapping is pinned.
     *
     * We're allowed to run sleeping lock_page() here because we know the caller has
     * __GFP_FS.
     */
    static void handle_write_error(struct address_space *mapping,
    				struct page *page, int error)
    {
    	lock_page(page);
    	if (page_mapping(page) == mapping)
    		mapping_set_error(mapping, error);
    	unlock_page(page);
    }
    
    /* possible outcome of pageout() */
    typedef enum {
    	/* failed to write page out, page is locked */
    	PAGE_KEEP,
    	/* move page to the active list, page is locked */
    	PAGE_ACTIVATE,
    	/* page has been sent to the disk successfully, page is unlocked */
    	PAGE_SUCCESS,
    	/* page is clean and locked */
    	PAGE_CLEAN,
    } pageout_t;
    
    /*
     * pageout is called by shrink_page_list() for each dirty page.
     * Calls ->writepage().
     */
    static pageout_t pageout(struct page *page, struct address_space *mapping,
    			 struct scan_control *sc)
    {
    	/*
    	 * If the page is dirty, only perform writeback if that write
    	 * will be non-blocking.  To prevent this allocation from being
    	 * stalled by pagecache activity.  But note that there may be
    	 * stalls if we need to run get_block().  We could test
    	 * PagePrivate for that.
    	 *
    	 * If this process is currently in __generic_file_aio_write() against
    	 * this page's queue, we can perform writeback even if that
    	 * will block.
    	 *
    	 * If the page is swapcache, write it back even if that would
    	 * block, for some throttling. This happens by accident, because
    	 * swap_backing_dev_info is bust: it doesn't reflect the
    	 * congestion state of the swapdevs.  Easy to fix, if needed.
    	 */
    	if (!is_page_cache_freeable(page))
    		return PAGE_KEEP;
    	if (!mapping) {
    		/*
    		 * Some data journaling orphaned pages can have
    		 * page->mapping == NULL while being dirty with clean buffers.
    		 */
    		if (page_has_private(page)) {
    			if (try_to_free_buffers(page)) {
    				ClearPageDirty(page);
    				printk("%s: orphaned page\n", __func__);
    				return PAGE_CLEAN;
    			}
    		}
    		return PAGE_KEEP;
    	}
    	if (mapping->a_ops->writepage == NULL)
    		return PAGE_ACTIVATE;
    	if (!may_write_to_queue(mapping->backing_dev_info, sc))
    		return PAGE_KEEP;
    
    	if (clear_page_dirty_for_io(page)) {
    		int res;
    		struct writeback_control wbc = {
    			.sync_mode = WB_SYNC_NONE,
    			.nr_to_write = SWAP_CLUSTER_MAX,
    			.range_start = 0,
    			.range_end = LLONG_MAX,
    			.for_reclaim = 1,
    		};
    
    		SetPageReclaim(page);
    		res = mapping->a_ops->writepage(page, &wbc);
    		if (res < 0)
    			handle_write_error(mapping, page, res);
    		if (res == AOP_WRITEPAGE_ACTIVATE) {
    			ClearPageReclaim(page);
    			return PAGE_ACTIVATE;
    		}
    
    		if (!PageWriteback(page)) {
    			/* synchronous write or broken a_ops? */
    			ClearPageReclaim(page);
    		}
    		trace_mm_vmscan_writepage(page,
    			trace_reclaim_flags(page, sc->reclaim_mode));
    		inc_zone_page_state(page, NR_VMSCAN_WRITE);
    		return PAGE_SUCCESS;
    	}
    
    	return PAGE_CLEAN;
    }
    
    /*
     * Same as remove_mapping, but if the page is removed from the mapping, it
     * gets returned with a refcount of 0.
     */
    static int __remove_mapping(struct address_space *mapping, struct page *page)
    {
    	BUG_ON(!PageLocked(page));
    	BUG_ON(mapping != page_mapping(page));
    
    	spin_lock_irq(&mapping->tree_lock);
    	/*
    	 * The non racy check for a busy page.
    	 *
    	 * Must be careful with the order of the tests. When someone has
    	 * a ref to the page, it may be possible that they dirty it then
    	 * drop the reference. So if PageDirty is tested before page_count
    	 * here, then the following race may occur:
    	 *
    	 * get_user_pages(&page);
    	 * [user mapping goes away]
    	 * write_to(page);
    	 *				!PageDirty(page)    [good]
    	 * SetPageDirty(page);
    	 * put_page(page);
    	 *				!page_count(page)   [good, discard it]
    	 *
    	 * [oops, our write_to data is lost]
    	 *
    	 * Reversing the order of the tests ensures such a situation cannot
    	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
    	 * load is not satisfied before that of page->_count.
    	 *
    	 * Note that if SetPageDirty is always performed via set_page_dirty,
    	 * and thus under tree_lock, then this ordering is not required.
    	 */
    	if (!page_freeze_refs(page, 2))
    		goto cannot_free;
    	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
    	if (unlikely(PageDirty(page))) {
    		page_unfreeze_refs(page, 2);
    		goto cannot_free;
    	}
    
    	if (PageSwapCache(page)) {
    		swp_entry_t swap = { .val = page_private(page) };
    		__delete_from_swap_cache(page);
    		spin_unlock_irq(&mapping->tree_lock);
    		swapcache_free(swap, page);
    	} else {
    		void (*freepage)(struct page *);
    
    		freepage = mapping->a_ops->freepage;
    
    		__delete_from_page_cache(page);
    		spin_unlock_irq(&mapping->tree_lock);
    		mem_cgroup_uncharge_cache_page(page);
    
    		if (freepage != NULL)
    			freepage(page);
    	}
    
    	return 1;
    
    cannot_free:
    	spin_unlock_irq(&mapping->tree_lock);
    	return 0;
    }
    
    /*
     * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
     * someone else has a ref on the page, abort and return 0.  If it was
     * successfully detached, return 1.  Assumes the caller has a single ref on
     * this page.
     */
    int remove_mapping(struct address_space *mapping, struct page *page)
    {
    	if (__remove_mapping(mapping, page)) {
    		/*
    		 * Unfreezing the refcount with 1 rather than 2 effectively
    		 * drops the pagecache ref for us without requiring another
    		 * atomic operation.
    		 */
    		page_unfreeze_refs(page, 1);
    		return 1;
    	}
    	return 0;
    }
    
    /**
     * putback_lru_page - put previously isolated page onto appropriate LRU list
     * @page: page to be put back to appropriate lru list
     *
     * Add previously isolated @page to appropriate LRU list.
     * Page may still be unevictable for other reasons.
     *
     * lru_lock must not be held, interrupts must be enabled.
     */
    void putback_lru_page(struct page *page)
    {
    	int lru;
    	int active = !!TestClearPageActive(page);
    	int was_unevictable = PageUnevictable(page);
    
    	VM_BUG_ON(PageLRU(page));
    
    redo:
    	ClearPageUnevictable(page);
    
    	if (page_evictable(page, NULL)) {
    		/*
    		 * For evictable pages, we can use the cache.
    		 * In event of a race, worst case is we end up with an
    		 * unevictable page on [in]active list.
    		 * We know how to handle that.
    		 */
    		lru = active + page_lru_base_type(page);
    		lru_cache_add_lru(page, lru);
    	} else {
    		/*
    		 * Put unevictable pages directly on zone's unevictable
    		 * list.
    		 */
    		lru = LRU_UNEVICTABLE;
    		add_page_to_unevictable_list(page);
    		/*
    		 * When racing with an mlock or AS_UNEVICTABLE clearing
    		 * (page is unlocked) make sure that if the other thread
    		 * does not observe our setting of PG_lru and fails
    		 * isolation/check_move_unevictable_page,
    		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
    		 * the page back to the evictable list.
    		 *
    		 * The other side is TestClearPageMlocked() or shmem_lock().
    		 */
    		smp_mb();
    	}
    
    	/*
    	 * page's status can change while we move it among lru. If an evictable
    	 * page is on unevictable list, it never be freed. To avoid that,
    	 * check after we added it to the list, again.
    	 */
    	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
    		if (!isolate_lru_page(page)) {
    			put_page(page);
    			goto redo;
    		}
    		/* This means someone else dropped this page from LRU
    		 * So, it will be freed or putback to LRU again. There is
    		 * nothing to do here.
    		 */
    	}
    
    	if (was_unevictable && lru != LRU_UNEVICTABLE)
    		count_vm_event(UNEVICTABLE_PGRESCUED);
    	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
    		count_vm_event(UNEVICTABLE_PGCULLED);
    
    	put_page(page);		/* drop ref from isolate */
    }
    
    enum page_references {
    	PAGEREF_RECLAIM,
    	PAGEREF_RECLAIM_CLEAN,
    	PAGEREF_KEEP,
    	PAGEREF_ACTIVATE,
    };
    
    static enum page_references page_check_references(struct page *page,
    						  struct scan_control *sc)
    {
    	int referenced_ptes, referenced_page;
    	unsigned long vm_flags;
    
    	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
    	referenced_page = TestClearPageReferenced(page);
    
    	/* Lumpy reclaim - ignore references */
    	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
    		return PAGEREF_RECLAIM;
    
    	/*
    	 * Mlock lost the isolation race with us.  Let try_to_unmap()
    	 * move the page to the unevictable list.
    	 */
    	if (vm_flags & VM_LOCKED)
    		return PAGEREF_RECLAIM;
    
    	if (referenced_ptes) {
    		if (PageAnon(page))
    			return PAGEREF_ACTIVATE;
    		/*
    		 * All mapped pages start out with page table
    		 * references from the instantiating fault, so we need
    		 * to look twice if a mapped file page is used more
    		 * than once.
    		 *
    		 * Mark it and spare it for another trip around the
    		 * inactive list.  Another page table reference will
    		 * lead to its activation.
    		 *
    		 * Note: the mark is set for activated pages as well
    		 * so that recently deactivated but used pages are
    		 * quickly recovered.
    		 */
    		SetPageReferenced(page);
    
    		if (referenced_page || referenced_ptes > 1)
    			return PAGEREF_ACTIVATE;
    
    		/*
    		 * Activate file-backed executable pages after first usage.
    		 */
    		if (vm_flags & VM_EXEC)
    			return PAGEREF_ACTIVATE;
    
    		return PAGEREF_KEEP;
    	}
    
    	/* Reclaim if clean, defer dirty pages to writeback */
    	if (referenced_page && !PageSwapBacked(page))
    		return PAGEREF_RECLAIM_CLEAN;
    
    	return PAGEREF_RECLAIM;
    }
    
    /*
     * shrink_page_list() returns the number of reclaimed pages
     */
    static unsigned long shrink_page_list(struct list_head *page_list,
    				      struct zone *zone,
    				      struct scan_control *sc,
    				      int priority,
    				      unsigned long *ret_nr_dirty,
    				      unsigned long *ret_nr_writeback)
    {
    	LIST_HEAD(ret_pages);
    	LIST_HEAD(free_pages);
    	int pgactivate = 0;
    	unsigned long nr_dirty = 0;
    	unsigned long nr_congested = 0;
    	unsigned long nr_reclaimed = 0;
    	unsigned long nr_writeback = 0;
    
    	cond_resched();
    
    	while (!list_empty(page_list)) {
    		enum page_references references;
    		struct address_space *mapping;
    		struct page *page;
    		int may_enter_fs;
    
    		cond_resched();
    
    		page = lru_to_page(page_list);
    		list_del(&page->lru);
    
    		if (!trylock_page(page))
    			goto keep;
    
    		VM_BUG_ON(PageActive(page));
    		VM_BUG_ON(page_zone(page) != zone);
    
    		sc->nr_scanned++;
    
    		if (unlikely(!page_evictable(page, NULL)))
    			goto cull_mlocked;
    
    		if (!sc->may_unmap && page_mapped(page))
    			goto keep_locked;
    
    		/* Double the slab pressure for mapped and swapcache pages */
    		if (page_mapped(page) || PageSwapCache(page))
    			sc->nr_scanned++;
    
    		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
    			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
    
    		if (PageWriteback(page)) {
    			nr_writeback++;
    			/*
    			 * Synchronous reclaim cannot queue pages for
    			 * writeback due to the possibility of stack overflow
    			 * but if it encounters a page under writeback, wait
    			 * for the IO to complete.
    			 */
    			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
    			    may_enter_fs)
    				wait_on_page_writeback(page);
    			else {
    				unlock_page(page);
    				goto keep_lumpy;
    			}
    		}
    
    		references = page_check_references(page, sc);
    		switch (references) {
    		case PAGEREF_ACTIVATE:
    			goto activate_locked;
    		case PAGEREF_KEEP:
    			goto keep_locked;
    		case PAGEREF_RECLAIM:
    		case PAGEREF_RECLAIM_CLEAN:
    			; /* try to reclaim the page below */
    		}
    
    		/*
    		 * Anonymous process memory has backing store?
    		 * Try to allocate it some swap space here.
    		 */
    		if (PageAnon(page) && !PageSwapCache(page)) {
    			if (!(sc->gfp_mask & __GFP_IO))
    				goto keep_locked;
    			if (!add_to_swap(page))
    				goto activate_locked;
    			may_enter_fs = 1;
    		}
    
    		mapping = page_mapping(page);
    
    		/*
    		 * The page is mapped into the page tables of one or more
    		 * processes. Try to unmap it here.
    		 */
    		if (page_mapped(page) && mapping) {
    			switch (try_to_unmap(page, TTU_UNMAP)) {
    			case SWAP_FAIL:
    				goto activate_locked;
    			case SWAP_AGAIN:
    				goto keep_locked;
    			case SWAP_MLOCK:
    				goto cull_mlocked;
    			case SWAP_SUCCESS:
    				; /* try to free the page below */
    			}
    		}
    
    		if (PageDirty(page)) {
    			nr_dirty++;
    
    			/*
    			 * Only kswapd can writeback filesystem pages to
    			 * avoid risk of stack overflow but do not writeback
    			 * unless under significant pressure.
    			 */
    			if (page_is_file_cache(page) &&
    					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
    				/*
    				 * Immediately reclaim when written back.
    				 * Similar in principal to deactivate_page()
    				 * except we already have the page isolated
    				 * and know it's dirty
    				 */
    				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
    				SetPageReclaim(page);
    
    				goto keep_locked;
    			}
    
    			if (references == PAGEREF_RECLAIM_CLEAN)
    				goto keep_locked;
    			if (!may_enter_fs)
    				goto keep_locked;
    			if (!sc->may_writepage)
    				goto keep_locked;
    
    			/* Page is dirty, try to write it out here */
    			switch (pageout(page, mapping, sc)) {
    			case PAGE_KEEP:
    				nr_congested++;
    				goto keep_locked;
    			case PAGE_ACTIVATE:
    				goto activate_locked;
    			case PAGE_SUCCESS:
    				if (PageWriteback(page))
    					goto keep_lumpy;
    				if (PageDirty(page))
    					goto keep;
    
    				/*
    				 * A synchronous write - probably a ramdisk.  Go
    				 * ahead and try to reclaim the page.
    				 */
    				if (!trylock_page(page))
    					goto keep;
    				if (PageDirty(page) || PageWriteback(page))
    					goto keep_locked;
    				mapping = page_mapping(page);
    			case PAGE_CLEAN:
    				; /* try to free the page below */
    			}
    		}
    
    		/*
    		 * If the page has buffers, try to free the buffer mappings
    		 * associated with this page. If we succeed we try to free
    		 * the page as well.
    		 *
    		 * We do this even if the page is PageDirty().
    		 * try_to_release_page() does not perform I/O, but it is
    		 * possible for a page to have PageDirty set, but it is actually
    		 * clean (all its buffers are clean).  This happens if the
    		 * buffers were written out directly, with submit_bh(). ext3
    		 * will do this, as well as the blockdev mapping.
    		 * try_to_release_page() will discover that cleanness and will
    		 * drop the buffers and mark the page clean - it can be freed.
    		 *
    		 * Rarely, pages can have buffers and no ->mapping.  These are
    		 * the pages which were not successfully invalidated in
    		 * truncate_complete_page().  We try to drop those buffers here
    		 * and if that worked, and the page is no longer mapped into
    		 * process address space (page_count == 1) it can be freed.
    		 * Otherwise, leave the page on the LRU so it is swappable.
    		 */
    		if (page_has_private(page)) {
    			if (!try_to_release_page(page, sc->gfp_mask))
    				goto activate_locked;
    			if (!mapping && page_count(page) == 1) {
    				unlock_page(page);
    				if (put_page_testzero(page))
    					goto free_it;
    				else {
    					/*
    					 * rare race with speculative reference.
    					 * the speculative reference will free
    					 * this page shortly, so we may
    					 * increment nr_reclaimed here (and
    					 * leave it off the LRU).
    					 */
    					nr_reclaimed++;
    					continue;
    				}
    			}
    		}
    
    		if (!mapping || !__remove_mapping(mapping, page))
    			goto keep_locked;
    
    		/*
    		 * At this point, we have no other references and there is
    		 * no way to pick any more up (removed from LRU, removed
    		 * from pagecache). Can use non-atomic bitops now (and
    		 * we obviously don't have to worry about waking up a process
    		 * waiting on the page lock, because there are no references.
    		 */
    		__clear_page_locked(page);
    free_it:
    		nr_reclaimed++;
    
    		/*
    		 * Is there need to periodically free_page_list? It would
    		 * appear not as the counts should be low
    		 */
    		list_add(&page->lru, &free_pages);
    		continue;
    
    cull_mlocked:
    		if (PageSwapCache(page))
    			try_to_free_swap(page);
    		unlock_page(page);
    		putback_lru_page(page);
    		reset_reclaim_mode(sc);
    		continue;
    
    activate_locked:
    		/* Not a candidate for swapping, so reclaim swap space. */
    		if (PageSwapCache(page) && vm_swap_full())
    			try_to_free_swap(page);
    		VM_BUG_ON(PageActive(page));
    		SetPageActive(page);
    		pgactivate++;
    keep_locked:
    		unlock_page(page);
    keep:
    		reset_reclaim_mode(sc);
    keep_lumpy:
    		list_add(&page->lru, &ret_pages);
    		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
    	}
    
    	/*
    	 * Tag a zone as congested if all the dirty pages encountered were
    	 * backed by a congested BDI. In this case, reclaimers should just
    	 * back off and wait for congestion to clear because further reclaim
    	 * will encounter the same problem
    	 */
    	if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
    		zone_set_flag(zone, ZONE_CONGESTED);
    
    	free_hot_cold_page_list(&free_pages, 1);
    
    	list_splice(&ret_pages, page_list);
    	count_vm_events(PGACTIVATE, pgactivate);
    	*ret_nr_dirty += nr_dirty;
    	*ret_nr_writeback += nr_writeback;
    	return nr_reclaimed;
    }
    
    /*
     * Attempt to remove the specified page from its LRU.  Only take this page
     * if it is of the appropriate PageActive status.  Pages which are being
     * freed elsewhere are also ignored.
     *
     * page:	page to consider
     * mode:	one of the LRU isolation modes defined above
     *
     * returns 0 on success, -ve errno on failure.
     */
    int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
    {
    	bool all_lru_mode;
    	int ret = -EINVAL;
    
    	/* Only take pages on the LRU. */
    	if (!PageLRU(page))
    		return ret;
    
    	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
    		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
    
    	/*
    	 * When checking the active state, we need to be sure we are
    	 * dealing with comparible boolean values.  Take the logical not
    	 * of each.
    	 */
    	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
    		return ret;
    
    	if (!all_lru_mode && !!page_is_file_cache(page) != file)
    		return ret;
    
    	/*
    	 * When this function is being called for lumpy reclaim, we
    	 * initially look into all LRU pages, active, inactive and
    	 * unevictable; only give shrink_page_list evictable pages.
    	 */
    	if (PageUnevictable(page))
    		return ret;
    
    	ret = -EBUSY;
    
    	if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page)))
    		return ret;
    
    	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
    		return ret;
    
    	if (likely(get_page_unless_zero(page))) {
    		/*
    		 * Be careful not to clear PageLRU until after we're
    		 * sure the page is not being freed elsewhere -- the
    		 * page release code relies on it.
    		 */
    		ClearPageLRU(page);
    		ret = 0;
    	}
    
    	return ret;
    }
    
    /*
     * zone->lru_lock is heavily contended.  Some of the functions that
     * shrink the lists perform better by taking out a batch of pages
     * and working on them outside the LRU lock.
     *
     * For pagecache intensive workloads, this function is the hottest
     * spot in the kernel (apart from copy_*_user functions).
     *
     * Appropriate locks must be held before calling this function.
     *
     * @nr_to_scan:	The number of pages to look through on the list.
     * @src:	The LRU list to pull pages off.
     * @dst:	The temp list to put pages on to.
     * @scanned:	The number of pages that were scanned.
     * @order:	The caller's attempted allocation order
     * @mode:	One of the LRU isolation modes
     * @file:	True [1] if isolating file [!anon] pages
     *
     * returns how many pages were moved onto *@dst.
     */
    static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
    		struct list_head *src, struct list_head *dst,
    		unsigned long *scanned, int order, isolate_mode_t mode,
    		int file)
    {
    	unsigned long nr_taken = 0;
    	unsigned long nr_lumpy_taken = 0;
    	unsigned long nr_lumpy_dirty = 0;
    	unsigned long nr_lumpy_failed = 0;
    	unsigned long scan;
    
    	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
    		struct page *page;
    		unsigned long pfn;
    		unsigned long end_pfn;
    		unsigned long page_pfn;
    		int zone_id;
    
    		page = lru_to_page(src);
    		prefetchw_prev_lru_page(page, src, flags);
    
    		VM_BUG_ON(!PageLRU(page));
    
    		switch (__isolate_lru_page(page, mode, file)) {
    		case 0:
    			list_move(&page->lru, dst);
    			mem_cgroup_del_lru(page);
    			nr_taken += hpage_nr_pages(page);
    			break;
    
    		case -EBUSY:
    			/* else it is being freed elsewhere */
    			list_move(&page->lru, src);
    			mem_cgroup_rotate_lru_list(page, page_lru(page));
    			continue;
    
    		default:
    			BUG();
    		}
    
    		if (!order)
    			continue;
    
    		/*
    		 * Attempt to take all pages in the order aligned region
    		 * surrounding the tag page.  Only take those pages of
    		 * the same active state as that tag page.  We may safely
    		 * round the target page pfn down to the requested order
    		 * as the mem_map is guaranteed valid out to MAX_ORDER,
    		 * where that page is in a different zone we will detect
    		 * it from its zone id and abort this block scan.
    		 */
    		zone_id = page_zone_id(page);
    		page_pfn = page_to_pfn(page);
    		pfn = page_pfn & ~((1 << order) - 1);
    		end_pfn = pfn + (1 << order);
    		for (; pfn < end_pfn; pfn++) {
    			struct page *cursor_page;
    
    			/* The target page is in the block, ignore it. */
    			if (unlikely(pfn == page_pfn))
    				continue;
    
    			/* Avoid holes within the zone. */
    			if (unlikely(!pfn_valid_within(pfn)))
    				break;
    
    			cursor_page = pfn_to_page(pfn);
    
    			/* Check that we have not crossed a zone boundary. */
    			if (unlikely(page_zone_id(cursor_page) != zone_id))
    				break;
    
    			/*
    			 * If we don't have enough swap space, reclaiming of
    			 * anon page which don't already have a swap slot is
    			 * pointless.
    			 */
    			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
    			    !PageSwapCache(cursor_page))
    				break;
    
    			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
    				list_move(&cursor_page->lru, dst);
    				mem_cgroup_del_lru(cursor_page);
    				nr_taken += hpage_nr_pages(page);
    				nr_lumpy_taken++;
    				if (PageDirty(cursor_page))
    					nr_lumpy_dirty++;
    				scan++;
    			} else {
    				/*
    				 * Check if the page is freed already.
    				 *
    				 * We can't use page_count() as that
    				 * requires compound_head and we don't
    				 * have a pin on the page here. If a
    				 * page is tail, we may or may not
    				 * have isolated the head, so assume
    				 * it's not free, it'd be tricky to
    				 * track the head status without a
    				 * page pin.
    				 */
    				if (!PageTail(cursor_page) &&
    				    !atomic_read(&cursor_page->_count))
    					continue;
    				break;
    			}
    		}
    
    		/* If we break out of the loop above, lumpy reclaim failed */
    		if (pfn < end_pfn)
    			nr_lumpy_failed++;
    	}
    
    	*scanned = scan;
    
    	trace_mm_vmscan_lru_isolate(order,
    			nr_to_scan, scan,
    			nr_taken,
    			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
    			mode);
    	return nr_taken;
    }
    
    static unsigned long isolate_pages_global(unsigned long nr,
    					struct list_head *dst,
    					unsigned long *scanned, int order,
    					isolate_mode_t mode,
    					struct zone *z,	int active, int file)
    {
    	int lru = LRU_BASE;
    	if (active)
    		lru += LRU_ACTIVE;
    	if (file)
    		lru += LRU_FILE;
    	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
    								mode, file);
    }
    
    /*
     * clear_active_flags() is a helper for shrink_active_list(), clearing
     * any active bits from the pages in the list.
     */
    static unsigned long clear_active_flags(struct list_head *page_list,
    					unsigned int *count)
    {
    	int nr_active = 0;
    	int lru;
    	struct page *page;
    
    	list_for_each_entry(page, page_list, lru) {
    		int numpages = hpage_nr_pages(page);
    		lru = page_lru_base_type(page);
    		if (PageActive(page)) {
    			lru += LRU_ACTIVE;
    			ClearPageActive(page);
    			nr_active += numpages;
    		}
    		if (count)
    			count[lru] += numpages;
    	}
    
    	return nr_active;
    }
    
    /**
     * isolate_lru_page - tries to isolate a page from its LRU list
     * @page: page to isolate from its LRU list
     *
     * Isolates a @page from an LRU list, clears PageLRU and adjusts the
     * vmstat statistic corresponding to whatever LRU list the page was on.
     *
     * Returns 0 if the page was removed from an LRU list.
     * Returns -EBUSY if the page was not on an LRU list.
     *
     * The returned page will have PageLRU() cleared.  If it was found on
     * the active list, it will have PageActive set.  If it was found on
     * the unevictable list, it will have the PageUnevictable bit set. That flag
     * may need to be cleared by the caller before letting the page go.
     *
     * The vmstat statistic corresponding to the list on which the page was
     * found will be decremented.
     *
     * Restrictions:
     * (1) Must be called with an elevated refcount on the page. This is a
     *     fundamentnal difference from isolate_lru_pages (which is called
     *     without a stable reference).
     * (2) the lru_lock must not be held.
     * (3) interrupts must be enabled.
     */
    int isolate_lru_page(struct page *page)
    {
    	int ret = -EBUSY;
    
    	VM_BUG_ON(!page_count(page));
    
    	if (PageLRU(page)) {
    		struct zone *zone = page_zone(page);
    
    		spin_lock_irq(&zone->lru_lock);
    		if (PageLRU(page)) {
    			int lru = page_lru(page);
    			ret = 0;
    			get_page(page);
    			ClearPageLRU(page);
    
    			del_page_from_lru_list(zone, page, lru);
    		}
    		spin_unlock_irq(&zone->lru_lock);
    	}
    	return ret;
    }
    
    /*
     * Are there way too many processes in the direct reclaim path already?
     */
    static int too_many_isolated(struct zone *zone, int file,
    		struct scan_control *sc)
    {
    	unsigned long inactive, isolated;
    
    	if (current_is_kswapd())
    		return 0;
    
    	if (!scanning_global_lru(sc))
    		return 0;
    
    	if (file) {
    		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
    		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
    	} else {
    		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
    		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
    	}
    
    	return isolated > inactive;
    }
    
    /*
     * TODO: Try merging with migrations version of putback_lru_pages
     */
    static noinline_for_stack void
    putback_lru_pages(struct zone *zone, struct scan_control *sc,
    				unsigned long nr_anon, unsigned long nr_file,
    				struct list_head *page_list)
    {
    	struct page *page;
    	struct pagevec pvec;
    	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
    
    	pagevec_init(&pvec, 1);
    
    	/*
    	 * Put back any unfreeable pages.
    	 */
    	spin_lock(&zone->lru_lock);
    	while (!list_empty(page_list)) {
    		int lru;
    		page = lru_to_page(page_list);
    		VM_BUG_ON(PageLRU(page));
    		list_del(&page->lru);
    		if (unlikely(!page_evictable(page, NULL))) {
    			spin_unlock_irq(&zone->lru_lock);
    			putback_lru_page(page);
    			spin_lock_irq(&zone->lru_lock);
    			continue;
    		}
    		SetPageLRU(page);
    		lru = page_lru(page);
    		add_page_to_lru_list(zone, page, lru);
    		if (is_active_lru(lru)) {
    			int file = is_file_lru(lru);
    			int numpages = hpage_nr_pages(page);
    			reclaim_stat->recent_rotated[file] += numpages;
    		}
    		if (!pagevec_add(&pvec, page)) {
    			spin_unlock_irq(&zone->lru_lock);
    			__pagevec_release(&pvec);
    			spin_lock_irq(&zone->lru_lock);
    		}
    	}
    	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
    	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
    
    	spin_unlock_irq(&zone->lru_lock);
    	pagevec_release(&pvec);
    }
    
    static noinline_for_stack void update_isolated_counts(struct zone *zone,
    					struct scan_control *sc,
    					unsigned long *nr_anon,
    					unsigned long *nr_file,
    					struct list_head *isolated_list)
    {
    	unsigned long nr_active;
    	unsigned int count[NR_LRU_LISTS] = { 0, };
    	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
    
    	nr_active = clear_active_flags(isolated_list, count);
    	__count_vm_events(PGDEACTIVATE, nr_active);
    
    	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
    			      -count[LRU_ACTIVE_FILE]);
    	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
    			      -count[LRU_INACTIVE_FILE]);
    	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
    			      -count[LRU_ACTIVE_ANON]);
    	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
    			      -count[LRU_INACTIVE_ANON]);
    
    	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
    	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
    	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
    	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
    
    	reclaim_stat->recent_scanned[0] += *nr_anon;
    	reclaim_stat->recent_scanned[1] += *nr_file;
    }
    
    /*
     * Returns true if a direct reclaim should wait on pages under writeback.
     *
     * If we are direct reclaiming for contiguous pages and we do not reclaim
     * everything in the list, try again and wait for writeback IO to complete.
     * This will stall high-order allocations noticeably. Only do that when really
     * need to free the pages under high memory pressure.
     */
    static inline bool should_reclaim_stall(unsigned long nr_taken,
    					unsigned long nr_freed,
    					int priority,
    					struct scan_control *sc)
    {
    	int lumpy_stall_priority;
    
    	/* kswapd should not stall on sync IO */
    	if (current_is_kswapd())
    		return false;
    
    	/* Only stall on lumpy reclaim */
    	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
    		return false;
    
    	/* If we have reclaimed everything on the isolated list, no stall */
    	if (nr_freed == nr_taken)
    		return false;
    
    	/*
    	 * For high-order allocations, there are two stall thresholds.
    	 * High-cost allocations stall immediately where as lower
    	 * order allocations such as stacks require the scanning
    	 * priority to be much higher before stalling.
    	 */
    	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
    		lumpy_stall_priority = DEF_PRIORITY;
    	else
    		lumpy_stall_priority = DEF_PRIORITY / 3;
    
    	return priority <= lumpy_stall_priority;
    }
    
    /*
     * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
     * of reclaimed pages
     */
    static noinline_for_stack unsigned long
    shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
    			struct scan_control *sc, int priority, int file)
    {
    	LIST_HEAD(page_list);
    	unsigned long nr_scanned;
    	unsigned long nr_reclaimed = 0;
    	unsigned long nr_taken;
    	unsigned long nr_anon;
    	unsigned long nr_file;
    	unsigned long nr_dirty = 0;
    	unsigned long nr_writeback = 0;
    	isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
    
    	while (unlikely(too_many_isolated(zone, file, sc))) {
    		congestion_wait(BLK_RW_ASYNC, HZ/10);
    
    		/* We are about to die and free our memory. Return now. */
    		if (fatal_signal_pending(current))
    			return SWAP_CLUSTER_MAX;
    	}
    
    	set_reclaim_mode(priority, sc, false);
    	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
    		reclaim_mode |= ISOLATE_ACTIVE;
    
    	lru_add_drain();
    
    	if (!sc->may_unmap)
    		reclaim_mode |= ISOLATE_UNMAPPED;
    	if (!sc->may_writepage)
    		reclaim_mode |= ISOLATE_CLEAN;
    
    	spin_lock_irq(&zone->lru_lock);
    
    	if (scanning_global_lru(sc)) {
    		nr_taken = isolate_pages_global(nr_to_scan, &page_list,
    			&nr_scanned, sc->order, reclaim_mode, zone, 0, file);
    		zone->pages_scanned += nr_scanned;
    		if (current_is_kswapd())
    			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
    					       nr_scanned);
    		else
    			__count_zone_vm_events(PGSCAN_DIRECT, zone,
    					       nr_scanned);
    	} else {
    		nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
    			&nr_scanned, sc->order, reclaim_mode, zone,
    			sc->mem_cgroup, 0, file);
    		/*
    		 * mem_cgroup_isolate_pages() keeps track of
    		 * scanned pages on its own.
    		 */
    	}
    
    	if (nr_taken == 0) {
    		spin_unlock_irq(&zone->lru_lock);
    		return 0;
    	}
    
    	update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
    
    	spin_unlock_irq(&zone->lru_lock);
    
    	nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
    						&nr_dirty, &nr_writeback);
    
    	/* Check if we should syncronously wait for writeback */
    	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
    		set_reclaim_mode(priority, sc, true);
    		nr_reclaimed += shrink_page_list(&page_list, zone, sc,
    					priority, &nr_dirty, &nr_writeback);
    	}
    
    	local_irq_disable();
    	if (current_is_kswapd())
    		__count_vm_events(KSWAPD_STEAL, nr_reclaimed);
    	__count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
    
    	putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
    
    	/*
    	 * If reclaim is isolating dirty pages under writeback, it implies
    	 * that the long-lived page allocation rate is exceeding the page
    	 * laundering rate. Either the global limits are not being effective
    	 * at throttling processes due to the page distribution throughout
    	 * zones or there is heavy usage of a slow backing device. The
    	 * only option is to throttle from reclaim context which is not ideal
    	 * as there is no guarantee the dirtying process is throttled in the
    	 * same way balance_dirty_pages() manages.
    	 *
    	 * This scales the number of dirty pages that must be under writeback
    	 * before throttling depending on priority. It is a simple backoff
    	 * function that has the most effect in the range DEF_PRIORITY to
    	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
    	 * in trouble and reclaim is considered to be in trouble.
    	 *
    	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
    	 * DEF_PRIORITY-1  50% must be PageWriteback
    	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
    	 * ...
    	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
    	 *                     isolated page is PageWriteback
    	 */
    	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
    		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
    
    	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
    		zone_idx(zone),
    		nr_scanned, nr_reclaimed,
    		priority,
    		trace_shrink_flags(file, sc->reclaim_mode));
    	return nr_reclaimed;
    }
    
    /*
     * This moves pages from the active list to the inactive list.
     *
     * We move them the other way if the page is referenced by one or more
     * processes, from rmap.
     *
     * If the pages are mostly unmapped, the processing is fast and it is
     * appropriate to hold zone->lru_lock across the whole operation.  But if
     * the pages are mapped, the processing is slow (page_referenced()) so we
     * should drop zone->lru_lock around each page.  It's impossible to balance
     * this, so instead we remove the pages from the LRU while processing them.
     * It is safe to rely on PG_active against the non-LRU pages in here because
     * nobody will play with that bit on a non-LRU page.
     *
     * The downside is that we have to touch page->_count against each page.
     * But we had to alter page->flags anyway.
     */
    
    static void move_active_pages_to_lru(struct zone *zone,
    				     struct list_head *list,
    				     enum lru_list lru)
    {
    	unsigned long pgmoved = 0;
    	struct pagevec pvec;
    	struct page *page;
    
    	pagevec_init(&pvec, 1);
    
    	while (!list_empty(list)) {
    		page = lru_to_page(list);
    
    		VM_BUG_ON(PageLRU(page));
    		SetPageLRU(page);
    
    		list_move(&page->lru, &zone->lru[lru].list);
    		mem_cgroup_add_lru_list(page, lru);
    		pgmoved += hpage_nr_pages(page);
    
    		if (!pagevec_add(&pvec, page) || list_empty(list)) {
    			spin_unlock_irq(&zone->lru_lock);
    			if (buffer_heads_over_limit)
    				pagevec_strip(&pvec);
    			__pagevec_release(&pvec);
    			spin_lock_irq(&zone->lru_lock);
    		}
    	}
    	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
    	if (!is_active_lru(lru))
    		__count_vm_events(PGDEACTIVATE, pgmoved);
    }
    
    static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
    			struct scan_control *sc, int priority, int file)
    {
    	unsigned long nr_taken;
    	unsigned long pgscanned;
    	unsigned long vm_flags;
    	LIST_HEAD(l_hold);	/* The pages which were snipped off */
    	LIST_HEAD(l_active);
    	LIST_HEAD(l_inactive);
    	struct page *page;
    	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
    	unsigned long nr_rotated = 0;
    	isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
    
    	lru_add_drain();
    
    	if (!sc->may_unmap)
    		reclaim_mode |= ISOLATE_UNMAPPED;
    	if (!sc->may_writepage)
    		reclaim_mode |= ISOLATE_CLEAN;
    
    	spin_lock_irq(&zone->lru_lock);
    	if (scanning_global_lru(sc)) {
    		nr_taken = isolate_pages_global(nr_pages, &l_hold,
    						&pgscanned, sc->order,
    						reclaim_mode, zone,
    						1, file);
    		zone->pages_scanned += pgscanned;
    	} else {
    		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
    						&pgscanned, sc->order,
    						reclaim_mode, zone,
    						sc->mem_cgroup, 1, file);
    		/*
    		 * mem_cgroup_isolate_pages() keeps track of
    		 * scanned pages on its own.
    		 */
    	}
    
    	reclaim_stat->recent_scanned[file] += nr_taken;
    
    	__count_zone_vm_events(PGREFILL, zone, pgscanned);
    	if (file)
    		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
    	else
    		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
    	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
    	spin_unlock_irq(&zone->lru_lock);
    
    	while (!list_empty(&l_hold)) {
    		cond_resched();
    		page = lru_to_page(&l_hold);
    		list_del(&page->lru);
    
    		if (unlikely(!page_evictable(page, NULL))) {
    			putback_lru_page(page);
    			continue;
    		}
    
    		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
    			nr_rotated += hpage_nr_pages(page);
    			/*
    			 * Identify referenced, file-backed active pages and
    			 * give them one more trip around the active list. So
    			 * that executable code get better chances to stay in
    			 * memory under moderate memory pressure.  Anon pages
    			 * are not likely to be evicted by use-once streaming
    			 * IO, plus JVM can create lots of anon VM_EXEC pages,
    			 * so we ignore them here.
    			 */
    			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
    				list_add(&page->lru, &l_active);
    				continue;
    			}
    		}
    
    		ClearPageActive(page);	/* we are de-activating */
    		list_add(&page->lru, &l_inactive);
    	}
    
    	/*
    	 * Move pages back to the lru list.
    	 */
    	spin_lock_irq(&zone->lru_lock);
    	/*
    	 * Count referenced pages from currently used mappings as rotated,
    	 * even though only some of them are actually re-activated.  This
    	 * helps balance scan pressure between file and anonymous pages in
    	 * get_scan_ratio.
    	 */
    	reclaim_stat->recent_rotated[file] += nr_rotated;
    
    	move_active_pages_to_lru(zone, &l_active,
    						LRU_ACTIVE + file * LRU_FILE);
    	move_active_pages_to_lru(zone, &l_inactive,
    						LRU_BASE   + file * LRU_FILE);
    	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
    	spin_unlock_irq(&zone->lru_lock);
    }
    
    #ifdef CONFIG_SWAP
    static int inactive_anon_is_low_global(struct zone *zone)
    {
    	unsigned long active, inactive;
    
    	active = zone_page_state(zone, NR_ACTIVE_ANON);
    	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
    
    	if (inactive * zone->inactive_ratio < active)
    		return 1;
    
    	return 0;
    }
    
    /**
     * inactive_anon_is_low - check if anonymous pages need to be deactivated
     * @zone: zone to check
     * @sc:   scan control of this context
     *
     * Returns true if the zone does not have enough inactive anon pages,
     * meaning some active anon pages need to be deactivated.
     */
    static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
    {
    	int low;
    
    	/*
    	 * If we don't have swap space, anonymous page deactivation
    	 * is pointless.
    	 */
    	if (!total_swap_pages)
    		return 0;
    
    	if (scanning_global_lru(sc))
    		low = inactive_anon_is_low_global(zone);
    	else
    		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
    	return low;
    }
    #else
    static inline int inactive_anon_is_low(struct zone *zone,
    					struct scan_control *sc)
    {
    	return 0;
    }
    #endif
    
    static int inactive_file_is_low_global(struct zone *zone)
    {
    	unsigned long active, inactive;
    
    	active = zone_page_state(zone, NR_ACTIVE_FILE);
    	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
    
    	return (active > inactive);
    }
    
    /**
     * inactive_file_is_low - check if file pages need to be deactivated
     * @zone: zone to check
     * @sc:   scan control of this context
     *
     * When the system is doing streaming IO, memory pressure here
     * ensures that active file pages get deactivated, until more
     * than half of the file pages are on the inactive list.
     *
     * Once we get to that situation, protect the system's working
     * set from being evicted by disabling active file page aging.
     *
     * This uses a different ratio than the anonymous pages, because
     * the page cache uses a use-once replacement algorithm.
     */
    static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
    {
    	int low;
    
    	if (scanning_global_lru(sc))
    		low = inactive_file_is_low_global(zone);
    	else
    		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
    	return low;
    }
    
    static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
    				int file)
    {
    	if (file)
    		return inactive_file_is_low(zone, sc);
    	else
    		return inactive_anon_is_low(zone, sc);
    }
    
    static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
    	struct zone *zone, struct scan_control *sc, int priority)
    {
    	int file = is_file_lru(lru);
    
    	if (is_active_lru(lru)) {
    		if (inactive_list_is_low(zone, sc, file))
    		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
    		return 0;
    	}
    
    	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
    }
    
    static int vmscan_swappiness(struct scan_control *sc)
    {
    	if (scanning_global_lru(sc))
    		return vm_swappiness;
    	return mem_cgroup_swappiness(sc->mem_cgroup);
    }
    
    /*
     * Determine how aggressively the anon and file LRU lists should be
     * scanned.  The relative value of each set of LRU lists is determined
     * by looking at the fraction of the pages scanned we did rotate back
     * onto the active list instead of evict.
     *
     * nr[0] = anon pages to scan; nr[1] = file pages to scan
     */
    static void get_scan_count(struct zone *zone, struct scan_control *sc,
    					unsigned long *nr, int priority)
    {
    	unsigned long anon, file, free;
    	unsigned long anon_prio, file_prio;
    	unsigned long ap, fp;
    	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
    	u64 fraction[2], denominator;
    	enum lru_list l;
    	int noswap = 0;
    	bool force_scan = false;
    
    	/*
    	 * If the zone or memcg is small, nr[l] can be 0.  This
    	 * results in no scanning on this priority and a potential
    	 * priority drop.  Global direct reclaim can go to the next
    	 * zone and tends to have no problems. Global kswapd is for
    	 * zone balancing and it needs to scan a minimum amount. When
    	 * reclaiming for a memcg, a priority drop can cause high
    	 * latencies, so it's better to scan a minimum amount there as
    	 * well.
    	 */
    	if (scanning_global_lru(sc) && current_is_kswapd())
    		force_scan = true;
    	if (!scanning_global_lru(sc))
    		force_scan = true;
    
    	/* If we have no swap space, do not bother scanning anon pages. */
    	if (!sc->may_swap || (nr_swap_pages <= 0)) {
    		noswap = 1;
    		fraction[0] = 0;
    		fraction[1] = 1;
    		denominator = 1;
    		goto out;
    	}
    
    	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
    		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
    	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
    		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
    
    	if (scanning_global_lru(sc)) {
    		free  = zone_page_state(zone, NR_FREE_PAGES);
    		/* If we have very few page cache pages,
    		   force-scan anon pages. */
    		if (unlikely(file + free <= high_wmark_pages(zone))) {
    			fraction[0] = 1;
    			fraction[1] = 0;
    			denominator = 1;
    			goto out;
    		}
    	}
    
    	/*
    	 * With swappiness at 100, anonymous and file have the same priority.
    	 * This scanning priority is essentially the inverse of IO cost.
    	 */
    	anon_prio = vmscan_swappiness(sc);
    	file_prio = 200 - vmscan_swappiness(sc);
    
    	/*
    	 * OK, so we have swap space and a fair amount of page cache
    	 * pages.  We use the recently rotated / recently scanned
    	 * ratios to determine how valuable each cache is.
    	 *
    	 * Because workloads change over time (and to avoid overflow)
    	 * we keep these statistics as a floating average, which ends
    	 * up weighing recent references more than old ones.
    	 *
    	 * anon in [0], file in [1]
    	 */
    	spin_lock_irq(&zone->lru_lock);
    	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
    		reclaim_stat->recent_scanned[0] /= 2;
    		reclaim_stat->recent_rotated[0] /= 2;
    	}
    
    	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
    		reclaim_stat->recent_scanned[1] /= 2;
    		reclaim_stat->recent_rotated[1] /= 2;
    	}
    
    	/*
    	 * The amount of pressure on anon vs file pages is inversely
    	 * proportional to the fraction of recently scanned pages on
    	 * each list that were recently referenced and in active use.
    	 */
    	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
    	ap /= reclaim_stat->recent_rotated[0] + 1;
    
    	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
    	fp /= reclaim_stat->recent_rotated[1] + 1;
    	spin_unlock_irq(&zone->lru_lock);
    
    	fraction[0] = ap;
    	fraction[1] = fp;
    	denominator = ap + fp + 1;
    out:
    	for_each_evictable_lru(l) {
    		int file = is_file_lru(l);
    		unsigned long scan;
    
    		scan = zone_nr_lru_pages(zone, sc, l);
    		if (priority || noswap) {
    			scan >>= priority;
    			if (!scan && force_scan)
    				scan = SWAP_CLUSTER_MAX;
    			scan = div64_u64(scan * fraction[file], denominator);
    		}
    		nr[l] = scan;
    	}
    }
    
    /*
     * Reclaim/compaction depends on a number of pages being freed. To avoid
     * disruption to the system, a small number of order-0 pages continue to be
     * rotated and reclaimed in the normal fashion. However, by the time we get
     * back to the allocator and call try_to_compact_zone(), we ensure that
     * there are enough free pages for it to be likely successful
     */
    static inline bool should_continue_reclaim(struct zone *zone,
    					unsigned long nr_reclaimed,
    					unsigned long nr_scanned,
    					struct scan_control *sc)
    {
    	unsigned long pages_for_compaction;
    	unsigned long inactive_lru_pages;
    
    	/* If not in reclaim/compaction mode, stop */
    	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
    		return false;
    
    	/* Consider stopping depending on scan and reclaim activity */
    	if (sc->gfp_mask & __GFP_REPEAT) {
    		/*
    		 * For __GFP_REPEAT allocations, stop reclaiming if the
    		 * full LRU list has been scanned and we are still failing
    		 * to reclaim pages. This full LRU scan is potentially
    		 * expensive but a __GFP_REPEAT caller really wants to succeed
    		 */
    		if (!nr_reclaimed && !nr_scanned)
    			return false;
    	} else {
    		/*
    		 * For non-__GFP_REPEAT allocations which can presumably
    		 * fail without consequence, stop if we failed to reclaim
    		 * any pages from the last SWAP_CLUSTER_MAX number of
    		 * pages that were scanned. This will return to the
    		 * caller faster at the risk reclaim/compaction and
    		 * the resulting allocation attempt fails
    		 */
    		if (!nr_reclaimed)
    			return false;
    	}
    
    	/*
    	 * If we have not reclaimed enough pages for compaction and the
    	 * inactive lists are large enough, continue reclaiming
    	 */
    	pages_for_compaction = (2UL << sc->order);
    	inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
    	if (nr_swap_pages > 0)
    		inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
    	if (sc->nr_reclaimed < pages_for_compaction &&
    			inactive_lru_pages > pages_for_compaction)
    		return true;
    
    	/* If compaction would go ahead or the allocation would succeed, stop */
    	switch (compaction_suitable(zone, sc->order)) {
    	case COMPACT_PARTIAL:
    	case COMPACT_CONTINUE:
    		return false;
    	default:
    		return true;
    	}
    }
    
    /*
     * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
     */
    static void shrink_zone(int priority, struct zone *zone,
    				struct scan_control *sc)
    {
    	unsigned long nr[NR_LRU_LISTS];
    	unsigned long nr_to_scan;
    	enum lru_list l;
    	unsigned long nr_reclaimed, nr_scanned;
    	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
    	struct blk_plug plug;
    
    restart:
    	nr_reclaimed = 0;
    	nr_scanned = sc->nr_scanned;
    	get_scan_count(zone, sc, nr, priority);
    
    	blk_start_plug(&plug);
    	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
    					nr[LRU_INACTIVE_FILE]) {
    		for_each_evictable_lru(l) {
    			if (nr[l]) {
    				nr_to_scan = min_t(unsigned long,
    						   nr[l], SWAP_CLUSTER_MAX);
    				nr[l] -= nr_to_scan;
    
    				nr_reclaimed += shrink_list(l, nr_to_scan,
    							    zone, sc, priority);
    			}
    		}
    		/*
    		 * On large memory systems, scan >> priority can become
    		 * really large. This is fine for the starting priority;
    		 * we want to put equal scanning pressure on each zone.
    		 * However, if the VM has a harder time of freeing pages,
    		 * with multiple processes reclaiming pages, the total
    		 * freeing target can get unreasonably large.
    		 */
    		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
    			break;
    	}
    	blk_finish_plug(&plug);
    	sc->nr_reclaimed += nr_reclaimed;
    
    	/*
    	 * Even if we did not try to evict anon pages at all, we want to
    	 * rebalance the anon lru active/inactive ratio.
    	 */
    	if (inactive_anon_is_low(zone, sc))
    		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
    
    	/* reclaim/compaction might need reclaim to continue */
    	if (should_continue_reclaim(zone, nr_reclaimed,
    					sc->nr_scanned - nr_scanned, sc))
    		goto restart;
    
    	throttle_vm_writeout(sc->gfp_mask);
    }
    
    /*
     * This is the direct reclaim path, for page-allocating processes.  We only
     * try to reclaim pages from zones which will satisfy the caller's allocation
     * request.
     *
     * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
     * Because:
     * a) The caller may be trying to free *extra* pages to satisfy a higher-order
     *    allocation or
     * b) The target zone may be at high_wmark_pages(zone) but the lower zones
     *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
     *    zone defense algorithm.
     *
     * If a zone is deemed to be full of pinned pages then just give it a light
     * scan then give up on it.
     *
     * This function returns true if a zone is being reclaimed for a costly
     * high-order allocation and compaction is either ready to begin or deferred.
     * This indicates to the caller that it should retry the allocation or fail.
     */
    static bool shrink_zones(int priority, struct zonelist *zonelist,
    					struct scan_control *sc)
    {
    	struct zoneref *z;
    	struct zone *zone;
    	unsigned long nr_soft_reclaimed;
    	unsigned long nr_soft_scanned;
    	bool should_abort_reclaim = false;
    
    	for_each_zone_zonelist_nodemask(zone, z, zonelist,
    					gfp_zone(sc->gfp_mask), sc->nodemask) {
    		if (!populated_zone(zone))
    			continue;
    		/*
    		 * Take care memory controller reclaiming has small influence
    		 * to global LRU.
    		 */
    		if (scanning_global_lru(sc)) {
    			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
    				continue;
    			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
    				continue;	/* Let kswapd poll it */
    			if (COMPACTION_BUILD) {
    				/*
    				 * If we already have plenty of memory free for
    				 * compaction in this zone, don't free any more.
    				 * Even though compaction is invoked for any
    				 * non-zero order, only frequent costly order
    				 * reclamation is disruptive enough to become a
    				 * noticable problem, like transparent huge page
    				 * allocations.
    				 */
    				if (sc->order > PAGE_ALLOC_COSTLY_ORDER &&
    					(compaction_suitable(zone, sc->order) ||
    					 compaction_deferred(zone))) {
    					should_abort_reclaim = true;
    					continue;
    				}
    			}
    			/*
    			 * This steals pages from memory cgroups over softlimit
    			 * and returns the number of reclaimed pages and
    			 * scanned pages. This works for global memory pressure
    			 * and balancing, not for a memcg's limit.
    			 */
    			nr_soft_scanned = 0;
    			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
    						sc->order, sc->gfp_mask,
    						&nr_soft_scanned);
    			sc->nr_reclaimed += nr_soft_reclaimed;
    			sc->nr_scanned += nr_soft_scanned;
    			/* need some check for avoid more shrink_zone() */
    		}
    
    		shrink_zone(priority, zone, sc);
    	}
    
    	return should_abort_reclaim;
    }
    
    static bool zone_reclaimable(struct zone *zone)
    {
    	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
    }
    
    /* All zones in zonelist are unreclaimable? */
    static bool all_unreclaimable(struct zonelist *zonelist,
    		struct scan_control *sc)
    {
    	struct zoneref *z;
    	struct zone *zone;
    
    	for_each_zone_zonelist_nodemask(zone, z, zonelist,
    			gfp_zone(sc->gfp_mask), sc->nodemask) {
    		if (!populated_zone(zone))
    			continue;
    		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
    			continue;
    		if (!zone->all_unreclaimable)
    			return false;
    	}
    
    	return true;
    }
    
    /*
     * This is the main entry point to direct page reclaim.
     *
     * If a full scan of the inactive list fails to free enough memory then we
     * are "out of memory" and something needs to be killed.
     *
     * If the caller is !__GFP_FS then the probability of a failure is reasonably
     * high - the zone may be full of dirty or under-writeback pages, which this
     * caller can't do much about.  We kick the writeback threads and take explicit
     * naps in the hope that some of these pages can be written.  But if the
     * allocating task holds filesystem locks which prevent writeout this might not
     * work, and the allocation attempt will fail.
     *
     * returns:	0, if no pages reclaimed
     * 		else, the number of pages reclaimed
     */
    static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
    					struct scan_control *sc,
    					struct shrink_control *shrink)
    {
    	int priority;
    	unsigned long total_scanned = 0;
    	struct reclaim_state *reclaim_state = current->reclaim_state;
    	struct zoneref *z;
    	struct zone *zone;
    	unsigned long writeback_threshold;
    
    	get_mems_allowed();
    	delayacct_freepages_start();
    
    	if (scanning_global_lru(sc))
    		count_vm_event(ALLOCSTALL);
    
    	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
    		sc->nr_scanned = 0;
    		if (!priority)
    			disable_swap_token(sc->mem_cgroup);
    		if (shrink_zones(priority, zonelist, sc))
    			break;
    
    		/*
    		 * Don't shrink slabs when reclaiming memory from
    		 * over limit cgroups
    		 */
    		if (scanning_global_lru(sc)) {
    			unsigned long lru_pages = 0;
    			for_each_zone_zonelist(zone, z, zonelist,
    					gfp_zone(sc->gfp_mask)) {
    				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
    					continue;
    
    				lru_pages += zone_reclaimable_pages(zone);
    			}
    
    			shrink_slab(shrink, sc->nr_scanned, lru_pages);
    			if (reclaim_state) {
    				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
    				reclaim_state->reclaimed_slab = 0;
    			}
    		}
    		total_scanned += sc->nr_scanned;
    		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
    			goto out;
    
    		/*
    		 * Try to write back as many pages as we just scanned.  This
    		 * tends to cause slow streaming writers to write data to the
    		 * disk smoothly, at the dirtying rate, which is nice.   But
    		 * that's undesirable in laptop mode, where we *want* lumpy
    		 * writeout.  So in laptop mode, write out the whole world.
    		 */
    		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
    		if (total_scanned > writeback_threshold) {
    			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
    						WB_REASON_TRY_TO_FREE_PAGES);
    			sc->may_writepage = 1;
    		}
    
    		/* Take a nap, wait for some writeback to complete */
    		if (!sc->hibernation_mode && sc->nr_scanned &&
    		    priority < DEF_PRIORITY - 2) {
    			struct zone *preferred_zone;
    
    			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
    						&cpuset_current_mems_allowed,
    						&preferred_zone);
    			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
    		}
    	}
    
    out:
    	delayacct_freepages_end();
    	put_mems_allowed();
    
    	if (sc->nr_reclaimed)
    		return sc->nr_reclaimed;
    
    	/*
    	 * As hibernation is going on, kswapd is freezed so that it can't mark
    	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
    	 * check.
    	 */
    	if (oom_killer_disabled)
    		return 0;
    
    	/* top priority shrink_zones still had more to do? don't OOM, then */
    	if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
    		return 1;
    
    	return 0;
    }
    
    unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
    				gfp_t gfp_mask, nodemask_t *nodemask)
    {
    	unsigned long nr_reclaimed;
    	struct scan_control sc = {
    		.gfp_mask = gfp_mask,
    		.may_writepage = !laptop_mode,
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.may_unmap = 1,
    		.may_swap = 1,
    		.order = order,
    		.mem_cgroup = NULL,
    		.nodemask = nodemask,
    	};
    	struct shrink_control shrink = {
    		.gfp_mask = sc.gfp_mask,
    	};
    
    	trace_mm_vmscan_direct_reclaim_begin(order,
    				sc.may_writepage,
    				gfp_mask);
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
    
    	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
    
    	return nr_reclaimed;
    }
    
    #ifdef CONFIG_CGROUP_MEM_RES_CTLR
    
    unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
    						gfp_t gfp_mask, bool noswap,
    						struct zone *zone,
    						unsigned long *nr_scanned)
    {
    	struct scan_control sc = {
    		.nr_scanned = 0,
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.may_swap = !noswap,
    		.order = 0,
    		.mem_cgroup = mem,
    	};
    
    	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
    			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
    
    	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
    						      sc.may_writepage,
    						      sc.gfp_mask);
    
    	/*
    	 * NOTE: Although we can get the priority field, using it
    	 * here is not a good idea, since it limits the pages we can scan.
    	 * if we don't reclaim here, the shrink_zone from balance_pgdat
    	 * will pick up pages from other mem cgroup's as well. We hack
    	 * the priority and make it zero.
    	 */
    	shrink_zone(0, zone, &sc);
    
    	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
    
    	*nr_scanned = sc.nr_scanned;
    	return sc.nr_reclaimed;
    }
    
    unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
    					   gfp_t gfp_mask,
    					   bool noswap)
    {
    	struct zonelist *zonelist;
    	unsigned long nr_reclaimed;
    	int nid;
    	struct scan_control sc = {
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.may_swap = !noswap,
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.order = 0,
    		.mem_cgroup = mem_cont,
    		.nodemask = NULL, /* we don't care the placement */
    		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
    				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
    	};
    	struct shrink_control shrink = {
    		.gfp_mask = sc.gfp_mask,
    	};
    
    	/*
    	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
    	 * take care of from where we get pages. So the node where we start the
    	 * scan does not need to be the current node.
    	 */
    	nid = mem_cgroup_select_victim_node(mem_cont);
    
    	zonelist = NODE_DATA(nid)->node_zonelists;
    
    	trace_mm_vmscan_memcg_reclaim_begin(0,
    					    sc.may_writepage,
    					    sc.gfp_mask);
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
    
    	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
    
    	return nr_reclaimed;
    }
    #endif
    
    /*
     * pgdat_balanced is used when checking if a node is balanced for high-order
     * allocations. Only zones that meet watermarks and are in a zone allowed
     * by the callers classzone_idx are added to balanced_pages. The total of
     * balanced pages must be at least 25% of the zones allowed by classzone_idx
     * for the node to be considered balanced. Forcing all zones to be balanced
     * for high orders can cause excessive reclaim when there are imbalanced zones.
     * The choice of 25% is due to
     *   o a 16M DMA zone that is balanced will not balance a zone on any
     *     reasonable sized machine
     *   o On all other machines, the top zone must be at least a reasonable
     *     percentage of the middle zones. For example, on 32-bit x86, highmem
     *     would need to be at least 256M for it to be balance a whole node.
     *     Similarly, on x86-64 the Normal zone would need to be at least 1G
     *     to balance a node on its own. These seemed like reasonable ratios.
     */
    static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
    						int classzone_idx)
    {
    	unsigned long present_pages = 0;
    	int i;
    
    	for (i = 0; i <= classzone_idx; i++)
    		present_pages += pgdat->node_zones[i].present_pages;
    
    	/* A special case here: if zone has no page, we think it's balanced */
    	return balanced_pages >= (present_pages >> 2);
    }
    
    /* is kswapd sleeping prematurely? */
    static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
    					int classzone_idx)
    {
    	int i;
    	unsigned long balanced = 0;
    	bool all_zones_ok = true;
    
    	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
    	if (remaining)
    		return true;
    
    	/* Check the watermark levels */
    	for (i = 0; i <= classzone_idx; i++) {
    		struct zone *zone = pgdat->node_zones + i;
    
    		if (!populated_zone(zone))
    			continue;
    
    		/*
    		 * balance_pgdat() skips over all_unreclaimable after
    		 * DEF_PRIORITY. Effectively, it considers them balanced so
    		 * they must be considered balanced here as well if kswapd
    		 * is to sleep
    		 */
    		if (zone->all_unreclaimable) {
    			balanced += zone->present_pages;
    			continue;
    		}
    
    		if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
    							i, 0))
    			all_zones_ok = false;
    		else
    			balanced += zone->present_pages;
    	}
    
    	/*
    	 * For high-order requests, the balanced zones must contain at least
    	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
    	 * must be balanced
    	 */
    	if (order)
    		return !pgdat_balanced(pgdat, balanced, classzone_idx);
    	else
    		return !all_zones_ok;
    }
    
    /*
     * For kswapd, balance_pgdat() will work across all this node's zones until
     * they are all at high_wmark_pages(zone).
     *
     * Returns the final order kswapd was reclaiming at
     *
     * There is special handling here for zones which are full of pinned pages.
     * This can happen if the pages are all mlocked, or if they are all used by
     * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
     * What we do is to detect the case where all pages in the zone have been
     * scanned twice and there has been zero successful reclaim.  Mark the zone as
     * dead and from now on, only perform a short scan.  Basically we're polling
     * the zone for when the problem goes away.
     *
     * kswapd scans the zones in the highmem->normal->dma direction.  It skips
     * zones which have free_pages > high_wmark_pages(zone), but once a zone is
     * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
     * lower zones regardless of the number of free pages in the lower zones. This
     * interoperates with the page allocator fallback scheme to ensure that aging
     * of pages is balanced across the zones.
     */
    static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
    							int *classzone_idx)
    {
    	int all_zones_ok;
    	unsigned long balanced;
    	int priority;
    	int i;
    	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
    	unsigned long total_scanned;
    	struct reclaim_state *reclaim_state = current->reclaim_state;
    	unsigned long nr_soft_reclaimed;
    	unsigned long nr_soft_scanned;
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.may_unmap = 1,
    		.may_swap = 1,
    		/*
    		 * kswapd doesn't want to be bailed out while reclaim. because
    		 * we want to put equal scanning pressure on each zone.
    		 */
    		.nr_to_reclaim = ULONG_MAX,
    		.order = order,
    		.mem_cgroup = NULL,
    	};
    	struct shrink_control shrink = {
    		.gfp_mask = sc.gfp_mask,
    	};
    loop_again:
    	total_scanned = 0;
    	sc.nr_reclaimed = 0;
    	sc.may_writepage = !laptop_mode;
    	count_vm_event(PAGEOUTRUN);
    
    	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
    		unsigned long lru_pages = 0;
    		int has_under_min_watermark_zone = 0;
    
    		/* The swap token gets in the way of swapout... */
    		if (!priority)
    			disable_swap_token(NULL);
    
    		all_zones_ok = 1;
    		balanced = 0;
    
    		/*
    		 * Scan in the highmem->dma direction for the highest
    		 * zone which needs scanning
    		 */
    		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
    			struct zone *zone = pgdat->node_zones + i;
    
    			if (!populated_zone(zone))
    				continue;
    
    			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
    				continue;
    
    			/*
    			 * Do some background aging of the anon list, to give
    			 * pages a chance to be referenced before reclaiming.
    			 */
    			if (inactive_anon_is_low(zone, &sc))
    				shrink_active_list(SWAP_CLUSTER_MAX, zone,
    							&sc, priority, 0);
    
    			if (!zone_watermark_ok_safe(zone, order,
    					high_wmark_pages(zone), 0, 0)) {
    				end_zone = i;
    				break;
    			} else {
    				/* If balanced, clear the congested flag */
    				zone_clear_flag(zone, ZONE_CONGESTED);
    			}
    		}
    		if (i < 0)
    			goto out;
    
    		for (i = 0; i <= end_zone; i++) {
    			struct zone *zone = pgdat->node_zones + i;
    
    			lru_pages += zone_reclaimable_pages(zone);
    		}
    
    		/*
    		 * Now scan the zone in the dma->highmem direction, stopping
    		 * at the last zone which needs scanning.
    		 *
    		 * We do this because the page allocator works in the opposite
    		 * direction.  This prevents the page allocator from allocating
    		 * pages behind kswapd's direction of progress, which would
    		 * cause too much scanning of the lower zones.
    		 */
    		for (i = 0; i <= end_zone; i++) {
    			struct zone *zone = pgdat->node_zones + i;
    			int nr_slab;
    			unsigned long balance_gap;
    
    			if (!populated_zone(zone))
    				continue;
    
    			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
    				continue;
    
    			sc.nr_scanned = 0;
    
    			nr_soft_scanned = 0;
    			/*
    			 * Call soft limit reclaim before calling shrink_zone.
    			 */
    			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
    							order, sc.gfp_mask,
    							&nr_soft_scanned);
    			sc.nr_reclaimed += nr_soft_reclaimed;
    			total_scanned += nr_soft_scanned;
    
    			/*
    			 * We put equal pressure on every zone, unless
    			 * one zone has way too many pages free
    			 * already. The "too many pages" is defined
    			 * as the high wmark plus a "gap" where the
    			 * gap is either the low watermark or 1%
    			 * of the zone, whichever is smaller.
    			 */
    			balance_gap = min(low_wmark_pages(zone),
    				(zone->present_pages +
    					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
    				KSWAPD_ZONE_BALANCE_GAP_RATIO);
    			if (!zone_watermark_ok_safe(zone, order,
    					high_wmark_pages(zone) + balance_gap,
    					end_zone, 0)) {
    				shrink_zone(priority, zone, &sc);
    
    				reclaim_state->reclaimed_slab = 0;
    				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
    				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
    				total_scanned += sc.nr_scanned;
    
    				if (nr_slab == 0 && !zone_reclaimable(zone))
    					zone->all_unreclaimable = 1;
    			}
    
    			/*
    			 * If we've done a decent amount of scanning and
    			 * the reclaim ratio is low, start doing writepage
    			 * even in laptop mode
    			 */
    			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
    			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
    				sc.may_writepage = 1;
    
    			if (zone->all_unreclaimable) {
    				if (end_zone && end_zone == i)
    					end_zone--;
    				continue;
    			}
    
    			if (!zone_watermark_ok_safe(zone, order,
    					high_wmark_pages(zone), end_zone, 0)) {
    				all_zones_ok = 0;
    				/*
    				 * We are still under min water mark.  This
    				 * means that we have a GFP_ATOMIC allocation
    				 * failure risk. Hurry up!
    				 */
    				if (!zone_watermark_ok_safe(zone, order,
    					    min_wmark_pages(zone), end_zone, 0))
    					has_under_min_watermark_zone = 1;
    			} else {
    				/*
    				 * If a zone reaches its high watermark,
    				 * consider it to be no longer congested. It's
    				 * possible there are dirty pages backed by
    				 * congested BDIs but as pressure is relieved,
    				 * spectulatively avoid congestion waits
    				 */
    				zone_clear_flag(zone, ZONE_CONGESTED);
    				if (i <= *classzone_idx)
    					balanced += zone->present_pages;
    			}
    
    		}
    		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
    			break;		/* kswapd: all done */
    		/*
    		 * OK, kswapd is getting into trouble.  Take a nap, then take
    		 * another pass across the zones.
    		 */
    		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
    			if (has_under_min_watermark_zone)
    				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
    			else
    				congestion_wait(BLK_RW_ASYNC, HZ/10);
    		}
    
    		/*
    		 * We do this so kswapd doesn't build up large priorities for
    		 * example when it is freeing in parallel with allocators. It
    		 * matches the direct reclaim path behaviour in terms of impact
    		 * on zone->*_priority.
    		 */
    		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
    			break;
    	}
    out:
    
    	/*
    	 * order-0: All zones must meet high watermark for a balanced node
    	 * high-order: Balanced zones must make up at least 25% of the node
    	 *             for the node to be balanced
    	 */
    	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
    		cond_resched();
    
    		try_to_freeze();
    
    		/*
    		 * Fragmentation may mean that the system cannot be
    		 * rebalanced for high-order allocations in all zones.
    		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
    		 * it means the zones have been fully scanned and are still
    		 * not balanced. For high-order allocations, there is
    		 * little point trying all over again as kswapd may
    		 * infinite loop.
    		 *
    		 * Instead, recheck all watermarks at order-0 as they
    		 * are the most important. If watermarks are ok, kswapd will go
    		 * back to sleep. High-order users can still perform direct
    		 * reclaim if they wish.
    		 */
    		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
    			order = sc.order = 0;
    
    		goto loop_again;
    	}
    
    	/*
    	 * If kswapd was reclaiming at a higher order, it has the option of
    	 * sleeping without all zones being balanced. Before it does, it must
    	 * ensure that the watermarks for order-0 on *all* zones are met and
    	 * that the congestion flags are cleared. The congestion flag must
    	 * be cleared as kswapd is the only mechanism that clears the flag
    	 * and it is potentially going to sleep here.
    	 */
    	if (order) {
    		for (i = 0; i <= end_zone; i++) {
    			struct zone *zone = pgdat->node_zones + i;
    
    			if (!populated_zone(zone))
    				continue;
    
    			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
    				continue;
    
    			/* Confirm the zone is balanced for order-0 */
    			if (!zone_watermark_ok(zone, 0,
    					high_wmark_pages(zone), 0, 0)) {
    				order = sc.order = 0;
    				goto loop_again;
    			}
    
    			/* If balanced, clear the congested flag */
    			zone_clear_flag(zone, ZONE_CONGESTED);
    			if (i <= *classzone_idx)
    				balanced += zone->present_pages;
    		}
    	}
    
    	/*
    	 * Return the order we were reclaiming at so sleeping_prematurely()
    	 * makes a decision on the order we were last reclaiming at. However,
    	 * if another caller entered the allocator slow path while kswapd
    	 * was awake, order will remain at the higher level
    	 */
    	*classzone_idx = end_zone;
    	return order;
    }
    
    static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
    {
    	long remaining = 0;
    	DEFINE_WAIT(wait);
    
    	if (freezing(current) || kthread_should_stop())
    		return;
    
    	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    
    	/* Try to sleep for a short interval */
    	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
    		remaining = schedule_timeout(HZ/10);
    		finish_wait(&pgdat->kswapd_wait, &wait);
    		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    	}
    
    	/*
    	 * After a short sleep, check if it was a premature sleep. If not, then
    	 * go fully to sleep until explicitly woken up.
    	 */
    	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
    		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
    
    		/*
    		 * vmstat counters are not perfectly accurate and the estimated
    		 * value for counters such as NR_FREE_PAGES can deviate from the
    		 * true value by nr_online_cpus * threshold. To avoid the zone
    		 * watermarks being breached while under pressure, we reduce the
    		 * per-cpu vmstat threshold while kswapd is awake and restore
    		 * them before going back to sleep.
    		 */
    		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
    		schedule();
    		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
    	} else {
    		if (remaining)
    			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
    		else
    			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
    	}
    	finish_wait(&pgdat->kswapd_wait, &wait);
    }
    
    /*
     * The background pageout daemon, started as a kernel thread
     * from the init process.
     *
     * This basically trickles out pages so that we have _some_
     * free memory available even if there is no other activity
     * that frees anything up. This is needed for things like routing
     * etc, where we otherwise might have all activity going on in
     * asynchronous contexts that cannot page things out.
     *
     * If there are applications that are active memory-allocators
     * (most normal use), this basically shouldn't matter.
     */
    static int kswapd(void *p)
    {
    	unsigned long order, new_order;
    	unsigned balanced_order;
    	int classzone_idx, new_classzone_idx;
    	int balanced_classzone_idx;
    	pg_data_t *pgdat = (pg_data_t*)p;
    	struct task_struct *tsk = current;
    
    	struct reclaim_state reclaim_state = {
    		.reclaimed_slab = 0,
    	};
    	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    
    	lockdep_set_current_reclaim_state(GFP_KERNEL);
    
    	if (!cpumask_empty(cpumask))
    		set_cpus_allowed_ptr(tsk, cpumask);
    	current->reclaim_state = &reclaim_state;
    
    	/*
    	 * Tell the memory management that we're a "memory allocator",
    	 * and that if we need more memory we should get access to it
    	 * regardless (see "__alloc_pages()"). "kswapd" should
    	 * never get caught in the normal page freeing logic.
    	 *
    	 * (Kswapd normally doesn't need memory anyway, but sometimes
    	 * you need a small amount of memory in order to be able to
    	 * page out something else, and this flag essentially protects
    	 * us from recursively trying to free more memory as we're
    	 * trying to free the first piece of memory in the first place).
    	 */
    	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
    	set_freezable();
    
    	order = new_order = 0;
    	balanced_order = 0;
    	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
    	balanced_classzone_idx = classzone_idx;
    	for ( ; ; ) {
    		int ret;
    
    		/*
    		 * If the last balance_pgdat was unsuccessful it's unlikely a
    		 * new request of a similar or harder type will succeed soon
    		 * so consider going to sleep on the basis we reclaimed at
    		 */
    		if (balanced_classzone_idx >= new_classzone_idx &&
    					balanced_order == new_order) {
    			new_order = pgdat->kswapd_max_order;
    			new_classzone_idx = pgdat->classzone_idx;
    			pgdat->kswapd_max_order =  0;
    			pgdat->classzone_idx = pgdat->nr_zones - 1;
    		}
    
    		if (order < new_order || classzone_idx > new_classzone_idx) {
    			/*
    			 * Don't sleep if someone wants a larger 'order'
    			 * allocation or has tigher zone constraints
    			 */
    			order = new_order;
    			classzone_idx = new_classzone_idx;
    		} else {
    			kswapd_try_to_sleep(pgdat, balanced_order,
    						balanced_classzone_idx);
    			order = pgdat->kswapd_max_order;
    			classzone_idx = pgdat->classzone_idx;
    			new_order = order;
    			new_classzone_idx = classzone_idx;
    			pgdat->kswapd_max_order = 0;
    			pgdat->classzone_idx = pgdat->nr_zones - 1;
    		}
    
    		ret = try_to_freeze();
    		if (kthread_should_stop())
    			break;
    
    		/*
    		 * We can speed up thawing tasks if we don't call balance_pgdat
    		 * after returning from the refrigerator
    		 */
    		if (!ret) {
    			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
    			balanced_classzone_idx = classzone_idx;
    			balanced_order = balance_pgdat(pgdat, order,
    						&balanced_classzone_idx);
    		}
    	}
    	return 0;
    }
    
    /*
     * A zone is low on free memory, so wake its kswapd task to service it.
     */
    void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
    {
    	pg_data_t *pgdat;
    
    	if (!populated_zone(zone))
    		return;
    
    	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
    		return;
    	pgdat = zone->zone_pgdat;
    	if (pgdat->kswapd_max_order < order) {
    		pgdat->kswapd_max_order = order;
    		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
    	}
    	if (!waitqueue_active(&pgdat->kswapd_wait))
    		return;
    	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
    		return;
    
    	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
    	wake_up_interruptible(&pgdat->kswapd_wait);
    }
    
    /*
     * The reclaimable count would be mostly accurate.
     * The less reclaimable pages may be
     * - mlocked pages, which will be moved to unevictable list when encountered
     * - mapped pages, which may require several travels to be reclaimed
     * - dirty pages, which is not "instantly" reclaimable
     */
    unsigned long global_reclaimable_pages(void)
    {
    	int nr;
    
    	nr = global_page_state(NR_ACTIVE_FILE) +
    	     global_page_state(NR_INACTIVE_FILE);
    
    	if (nr_swap_pages > 0)
    		nr += global_page_state(NR_ACTIVE_ANON) +
    		      global_page_state(NR_INACTIVE_ANON);
    
    	return nr;
    }
    
    unsigned long zone_reclaimable_pages(struct zone *zone)
    {
    	int nr;
    
    	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
    	     zone_page_state(zone, NR_INACTIVE_FILE);
    
    	if (nr_swap_pages > 0)
    		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
    		      zone_page_state(zone, NR_INACTIVE_ANON);
    
    	return nr;
    }
    
    #ifdef CONFIG_HIBERNATION
    /*
     * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
     * freed pages.
     *
     * Rather than trying to age LRUs the aim is to preserve the overall
     * LRU order by reclaiming preferentially
     * inactive > active > active referenced > active mapped
     */
    unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
    {
    	struct reclaim_state reclaim_state;
    	struct scan_control sc = {
    		.gfp_mask = GFP_HIGHUSER_MOVABLE,
    		.may_swap = 1,
    		.may_unmap = 1,
    		.may_writepage = 1,
    		.nr_to_reclaim = nr_to_reclaim,
    		.hibernation_mode = 1,
    		.order = 0,
    	};
    	struct shrink_control shrink = {
    		.gfp_mask = sc.gfp_mask,
    	};
    	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    	struct task_struct *p = current;
    	unsigned long nr_reclaimed;
    
    	p->flags |= PF_MEMALLOC;
    	lockdep_set_current_reclaim_state(sc.gfp_mask);
    	reclaim_state.reclaimed_slab = 0;
    	p->reclaim_state = &reclaim_state;
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
    
    	p->reclaim_state = NULL;
    	lockdep_clear_current_reclaim_state();
    	p->flags &= ~PF_MEMALLOC;
    
    	return nr_reclaimed;
    }
    #endif /* CONFIG_HIBERNATION */
    
    /* It's optimal to keep kswapds on the same CPUs as their memory, but
       not required for correctness.  So if the last cpu in a node goes
       away, we get changed to run anywhere: as the first one comes back,
       restore their cpu bindings. */
    static int __devinit cpu_callback(struct notifier_block *nfb,
    				  unsigned long action, void *hcpu)
    {
    	int nid;
    
    	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
    		for_each_node_state(nid, N_HIGH_MEMORY) {
    			pg_data_t *pgdat = NODE_DATA(nid);
    			const struct cpumask *mask;
    
    			mask = cpumask_of_node(pgdat->node_id);
    
    			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
    				/* One of our CPUs online: restore mask */
    				set_cpus_allowed_ptr(pgdat->kswapd, mask);
    		}
    	}
    	return NOTIFY_OK;
    }
    
    /*
     * This kswapd start function will be called by init and node-hot-add.
     * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
     */
    int kswapd_run(int nid)
    {
    	pg_data_t *pgdat = NODE_DATA(nid);
    	int ret = 0;
    
    	if (pgdat->kswapd)
    		return 0;
    
    	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
    	if (IS_ERR(pgdat->kswapd)) {
    		/* failure at boot is fatal */
    		BUG_ON(system_state == SYSTEM_BOOTING);
    		printk("Failed to start kswapd on node %d\n",nid);
    		ret = -1;
    	}
    	return ret;
    }
    
    /*
     * Called by memory hotplug when all memory in a node is offlined.
     */
    void kswapd_stop(int nid)
    {
    	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
    
    	if (kswapd)
    		kthread_stop(kswapd);
    }
    
    static int __init kswapd_init(void)
    {
    	int nid;
    
    	swap_setup();
    	for_each_node_state(nid, N_HIGH_MEMORY)
     		kswapd_run(nid);
    	hotcpu_notifier(cpu_callback, 0);
    	return 0;
    }
    
    module_init(kswapd_init)
    
    #ifdef CONFIG_NUMA
    /*
     * Zone reclaim mode
     *
     * If non-zero call zone_reclaim when the number of free pages falls below
     * the watermarks.
     */
    int zone_reclaim_mode __read_mostly;
    
    #define RECLAIM_OFF 0
    #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
    #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
    #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
    
    /*
     * Priority for ZONE_RECLAIM. This determines the fraction of pages
     * of a node considered for each zone_reclaim. 4 scans 1/16th of
     * a zone.
     */
    #define ZONE_RECLAIM_PRIORITY 4
    
    /*
     * Percentage of pages in a zone that must be unmapped for zone_reclaim to
     * occur.
     */
    int sysctl_min_unmapped_ratio = 1;
    
    /*
     * If the number of slab pages in a zone grows beyond this percentage then
     * slab reclaim needs to occur.
     */
    int sysctl_min_slab_ratio = 5;
    
    static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
    {
    	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
    	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
    		zone_page_state(zone, NR_ACTIVE_FILE);
    
    	/*
    	 * It's possible for there to be more file mapped pages than
    	 * accounted for by the pages on the file LRU lists because
    	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
    	 */
    	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
    }
    
    /* Work out how many page cache pages we can reclaim in this reclaim_mode */
    static long zone_pagecache_reclaimable(struct zone *zone)
    {
    	long nr_pagecache_reclaimable;
    	long delta = 0;
    
    	/*
    	 * If RECLAIM_SWAP is set, then all file pages are considered
    	 * potentially reclaimable. Otherwise, we have to worry about
    	 * pages like swapcache and zone_unmapped_file_pages() provides
    	 * a better estimate
    	 */
    	if (zone_reclaim_mode & RECLAIM_SWAP)
    		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
    	else
    		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
    
    	/* If we can't clean pages, remove dirty pages from consideration */
    	if (!(zone_reclaim_mode & RECLAIM_WRITE))
    		delta += zone_page_state(zone, NR_FILE_DIRTY);
    
    	/* Watch for any possible underflows due to delta */
    	if (unlikely(delta > nr_pagecache_reclaimable))
    		delta = nr_pagecache_reclaimable;
    
    	return nr_pagecache_reclaimable - delta;
    }
    
    /*
     * Try to free up some pages from this zone through reclaim.
     */
    static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
    {
    	/* Minimum pages needed in order to stay on node */
    	const unsigned long nr_pages = 1 << order;
    	struct task_struct *p = current;
    	struct reclaim_state reclaim_state;
    	int priority;
    	struct scan_control sc = {
    		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
    		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
    		.may_swap = 1,
    		.nr_to_reclaim = max_t(unsigned long, nr_pages,
    				       SWAP_CLUSTER_MAX),
    		.gfp_mask = gfp_mask,
    		.order = order,
    	};
    	struct shrink_control shrink = {
    		.gfp_mask = sc.gfp_mask,
    	};
    	unsigned long nr_slab_pages0, nr_slab_pages1;
    
    	cond_resched();
    	/*
    	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
    	 * and we also need to be able to write out pages for RECLAIM_WRITE
    	 * and RECLAIM_SWAP.
    	 */
    	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
    	lockdep_set_current_reclaim_state(gfp_mask);
    	reclaim_state.reclaimed_slab = 0;
    	p->reclaim_state = &reclaim_state;
    
    	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
    		/*
    		 * Free memory by calling shrink zone with increasing
    		 * priorities until we have enough memory freed.
    		 */
    		priority = ZONE_RECLAIM_PRIORITY;
    		do {
    			shrink_zone(priority, zone, &sc);
    			priority--;
    		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
    	}
    
    	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
    	if (nr_slab_pages0 > zone->min_slab_pages) {
    		/*
    		 * shrink_slab() does not currently allow us to determine how
    		 * many pages were freed in this zone. So we take the current
    		 * number of slab pages and shake the slab until it is reduced
    		 * by the same nr_pages that we used for reclaiming unmapped
    		 * pages.
    		 *
    		 * Note that shrink_slab will free memory on all zones and may
    		 * take a long time.
    		 */
    		for (;;) {
    			unsigned long lru_pages = zone_reclaimable_pages(zone);
    
    			/* No reclaimable slab or very low memory pressure */
    			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
    				break;
    
    			/* Freed enough memory */
    			nr_slab_pages1 = zone_page_state(zone,
    							NR_SLAB_RECLAIMABLE);
    			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
    				break;
    		}
    
    		/*
    		 * Update nr_reclaimed by the number of slab pages we
    		 * reclaimed from this zone.
    		 */
    		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
    		if (nr_slab_pages1 < nr_slab_pages0)
    			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
    	}
    
    	p->reclaim_state = NULL;
    	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
    	lockdep_clear_current_reclaim_state();
    	return sc.nr_reclaimed >= nr_pages;
    }
    
    int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
    {
    	int node_id;
    	int ret;
    
    	/*
    	 * Zone reclaim reclaims unmapped file backed pages and
    	 * slab pages if we are over the defined limits.
    	 *
    	 * A small portion of unmapped file backed pages is needed for
    	 * file I/O otherwise pages read by file I/O will be immediately
    	 * thrown out if the zone is overallocated. So we do not reclaim
    	 * if less than a specified percentage of the zone is used by
    	 * unmapped file backed pages.
    	 */
    	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
    	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
    		return ZONE_RECLAIM_FULL;
    
    	if (zone->all_unreclaimable)
    		return ZONE_RECLAIM_FULL;
    
    	/*
    	 * Do not scan if the allocation should not be delayed.
    	 */
    	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
    		return ZONE_RECLAIM_NOSCAN;
    
    	/*
    	 * Only run zone reclaim on the local zone or on zones that do not
    	 * have associated processors. This will favor the local processor
    	 * over remote processors and spread off node memory allocations
    	 * as wide as possible.
    	 */
    	node_id = zone_to_nid(zone);
    	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
    		return ZONE_RECLAIM_NOSCAN;
    
    	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
    		return ZONE_RECLAIM_NOSCAN;
    
    	ret = __zone_reclaim(zone, gfp_mask, order);
    	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
    
    	if (!ret)
    		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
    
    	return ret;
    }
    #endif
    
    /*
     * page_evictable - test whether a page is evictable
     * @page: the page to test
     * @vma: the VMA in which the page is or will be mapped, may be NULL
     *
     * Test whether page is evictable--i.e., should be placed on active/inactive
     * lists vs unevictable list.  The vma argument is !NULL when called from the
     * fault path to determine how to instantate a new page.
     *
     * Reasons page might not be evictable:
     * (1) page's mapping marked unevictable
     * (2) page is part of an mlocked VMA
     *
     */
    int page_evictable(struct page *page, struct vm_area_struct *vma)
    {
    
    	if (mapping_unevictable(page_mapping(page)))
    		return 0;
    
    	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
    		return 0;
    
    	return 1;
    }
    
    /**
     * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
     * @page: page to check evictability and move to appropriate lru list
     * @zone: zone page is in
     *
     * Checks a page for evictability and moves the page to the appropriate
     * zone lru list.
     *
     * Restrictions: zone->lru_lock must be held, page must be on LRU and must
     * have PageUnevictable set.
     */
    static void check_move_unevictable_page(struct page *page, struct zone *zone)
    {
    	VM_BUG_ON(PageActive(page));
    
    retry:
    	ClearPageUnevictable(page);
    	if (page_evictable(page, NULL)) {
    		enum lru_list l = page_lru_base_type(page);
    
    		__dec_zone_state(zone, NR_UNEVICTABLE);
    		list_move(&page->lru, &zone->lru[l].list);
    		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
    		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
    		__count_vm_event(UNEVICTABLE_PGRESCUED);
    	} else {
    		/*
    		 * rotate unevictable list
    		 */
    		SetPageUnevictable(page);
    		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
    		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
    		if (page_evictable(page, NULL))
    			goto retry;
    	}
    }
    
    /**
     * scan_mapping_unevictable_pages - scan an address space for evictable pages
     * @mapping: struct address_space to scan for evictable pages
     *
     * Scan all pages in mapping.  Check unevictable pages for
     * evictability and move them to the appropriate zone lru list.
     */
    void scan_mapping_unevictable_pages(struct address_space *mapping)
    {
    	pgoff_t next = 0;
    	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
    			 PAGE_CACHE_SHIFT;
    	struct zone *zone;
    	struct pagevec pvec;
    
    	if (mapping->nrpages == 0)
    		return;
    
    	pagevec_init(&pvec, 0);
    	while (next < end &&
    		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
    		int i;
    		int pg_scanned = 0;
    
    		zone = NULL;
    
    		for (i = 0; i < pagevec_count(&pvec); i++) {
    			struct page *page = pvec.pages[i];
    			pgoff_t page_index = page->index;
    			struct zone *pagezone = page_zone(page);
    
    			pg_scanned++;
    			if (page_index > next)
    				next = page_index;
    			next++;
    
    			if (pagezone != zone) {
    				if (zone)
    					spin_unlock_irq(&zone->lru_lock);
    				zone = pagezone;
    				spin_lock_irq(&zone->lru_lock);
    			}
    
    			if (PageLRU(page) && PageUnevictable(page))
    				check_move_unevictable_page(page, zone);
    		}
    		if (zone)
    			spin_unlock_irq(&zone->lru_lock);
    		pagevec_release(&pvec);
    
    		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
    	}
    
    }
    
    static void warn_scan_unevictable_pages(void)
    {
    	printk_once(KERN_WARNING
    		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
    		    "disabled for lack of a legitimate use case.  If you have "
    		    "one, please send an email to linux-mm@kvack.org.\n",
    		    current->comm);
    }
    
    /*
     * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
     * all nodes' unevictable lists for evictable pages
     */
    unsigned long scan_unevictable_pages;
    
    int scan_unevictable_handler(struct ctl_table *table, int write,
    			   void __user *buffer,
    			   size_t *length, loff_t *ppos)
    {
    	warn_scan_unevictable_pages();
    	proc_doulongvec_minmax(table, write, buffer, length, ppos);
    	scan_unevictable_pages = 0;
    	return 0;
    }
    
    #ifdef CONFIG_NUMA
    /*
     * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
     * a specified node's per zone unevictable lists for evictable pages.
     */
    
    static ssize_t read_scan_unevictable_node(struct device *dev,
    					  struct device_attribute *attr,
    					  char *buf)
    {
    	warn_scan_unevictable_pages();
    	return sprintf(buf, "0\n");	/* always zero; should fit... */
    }
    
    static ssize_t write_scan_unevictable_node(struct device *dev,
    					   struct device_attribute *attr,
    					const char *buf, size_t count)
    {
    	warn_scan_unevictable_pages();
    	return 1;
    }
    
    
    static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
    			read_scan_unevictable_node,
    			write_scan_unevictable_node);
    
    int scan_unevictable_register_node(struct node *node)
    {
    	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
    }
    
    void scan_unevictable_unregister_node(struct node *node)
    {
    	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
    }
    #endif