Skip to content
Snippets Groups Projects
Select Git revision
  • 86450f20fb0047266c374d1bcc66ba747bd6b44f
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-sdio-wp
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • seco_lf-6.6.52-2.2.1_e88-e83-init
  • seco_lf-6.6.52-2.2.1_e88-g101ean02
  • seco_lf-6.6.52-2.2.1_e88-sscg
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

count_instructions.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    bootmem.c 12.00 KiB
    /*
     *  linux/mm/bootmem.c
     *
     *  Copyright (C) 1999 Ingo Molnar
     *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
     *
     *  simple boot-time physical memory area allocator and
     *  free memory collector. It's used to deal with reserved
     *  system memory and memory holes as well.
     */
    #include <linux/init.h>
    #include <linux/pfn.h>
    #include <linux/bootmem.h>
    #include <linux/module.h>
    
    #include <asm/bug.h>
    #include <asm/io.h>
    #include <asm/processor.h>
    
    #include "internal.h"
    
    /*
     * Access to this subsystem has to be serialized externally. (this is
     * true for the boot process anyway)
     */
    unsigned long max_low_pfn;
    unsigned long min_low_pfn;
    unsigned long max_pfn;
    
    EXPORT_UNUSED_SYMBOL(max_pfn);  /*  June 2006  */
    
    static LIST_HEAD(bdata_list);
    #ifdef CONFIG_CRASH_DUMP
    /*
     * If we have booted due to a crash, max_pfn will be a very low value. We need
     * to know the amount of memory that the previous kernel used.
     */
    unsigned long saved_max_pfn;
    #endif
    
    /* return the number of _pages_ that will be allocated for the boot bitmap */
    unsigned long __init bootmem_bootmap_pages(unsigned long pages)
    {
    	unsigned long mapsize;
    
    	mapsize = (pages+7)/8;
    	mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
    	mapsize >>= PAGE_SHIFT;
    
    	return mapsize;
    }
    
    /*
     * link bdata in order
     */
    static void __init link_bootmem(bootmem_data_t *bdata)
    {
    	bootmem_data_t *ent;
    
    	if (list_empty(&bdata_list)) {
    		list_add(&bdata->list, &bdata_list);
    		return;
    	}
    	/* insert in order */
    	list_for_each_entry(ent, &bdata_list, list) {
    		if (bdata->node_boot_start < ent->node_boot_start) {
    			list_add_tail(&bdata->list, &ent->list);
    			return;
    		}
    	}
    	list_add_tail(&bdata->list, &bdata_list);
    }
    
    /*
     * Given an initialised bdata, it returns the size of the boot bitmap
     */
    static unsigned long __init get_mapsize(bootmem_data_t *bdata)
    {
    	unsigned long mapsize;
    	unsigned long start = PFN_DOWN(bdata->node_boot_start);
    	unsigned long end = bdata->node_low_pfn;
    
    	mapsize = ((end - start) + 7) / 8;
    	return ALIGN(mapsize, sizeof(long));
    }
    
    /*
     * Called once to set up the allocator itself.
     */
    static unsigned long __init init_bootmem_core(pg_data_t *pgdat,
    	unsigned long mapstart, unsigned long start, unsigned long end)
    {
    	bootmem_data_t *bdata = pgdat->bdata;
    	unsigned long mapsize;
    
    	bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
    	bdata->node_boot_start = PFN_PHYS(start);
    	bdata->node_low_pfn = end;
    	link_bootmem(bdata);
    
    	/*
    	 * Initially all pages are reserved - setup_arch() has to
    	 * register free RAM areas explicitly.
    	 */
    	mapsize = get_mapsize(bdata);
    	memset(bdata->node_bootmem_map, 0xff, mapsize);
    
    	return mapsize;
    }
    
    /*
     * Marks a particular physical memory range as unallocatable. Usable RAM
     * might be used for boot-time allocations - or it might get added
     * to the free page pool later on.
     */
    static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
    					unsigned long size)
    {
    	unsigned long sidx, eidx;
    	unsigned long i;
    
    	/*
    	 * round up, partially reserved pages are considered
    	 * fully reserved.
    	 */
    	BUG_ON(!size);
    	BUG_ON(PFN_DOWN(addr) >= bdata->node_low_pfn);
    	BUG_ON(PFN_UP(addr + size) > bdata->node_low_pfn);
    
    	sidx = PFN_DOWN(addr - bdata->node_boot_start);
    	eidx = PFN_UP(addr + size - bdata->node_boot_start);
    
    	for (i = sidx; i < eidx; i++)
    		if (test_and_set_bit(i, bdata->node_bootmem_map)) {
    #ifdef CONFIG_DEBUG_BOOTMEM
    			printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
    #endif
    		}
    }
    
    static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
    				     unsigned long size)
    {
    	unsigned long sidx, eidx;
    	unsigned long i;
    
    	/*
    	 * round down end of usable mem, partially free pages are
    	 * considered reserved.
    	 */
    	BUG_ON(!size);
    	BUG_ON(PFN_DOWN(addr + size) > bdata->node_low_pfn);
    
    	if (addr < bdata->last_success)
    		bdata->last_success = addr;
    
    	/*
    	 * Round up the beginning of the address.
    	 */
    	sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
    	eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
    
    	for (i = sidx; i < eidx; i++) {
    		if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
    			BUG();
    	}
    }
    
    /*
     * We 'merge' subsequent allocations to save space. We might 'lose'
     * some fraction of a page if allocations cannot be satisfied due to
     * size constraints on boxes where there is physical RAM space
     * fragmentation - in these cases (mostly large memory boxes) this
     * is not a problem.
     *
     * On low memory boxes we get it right in 100% of the cases.
     *
     * alignment has to be a power of 2 value.
     *
     * NOTE:  This function is _not_ reentrant.
     */
    void * __init
    __alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
    	      unsigned long align, unsigned long goal, unsigned long limit)
    {
    	unsigned long offset, remaining_size, areasize, preferred;
    	unsigned long i, start = 0, incr, eidx, end_pfn;
    	void *ret;
    
    	if (!size) {
    		printk("__alloc_bootmem_core(): zero-sized request\n");
    		BUG();
    	}
    	BUG_ON(align & (align-1));
    
    	if (limit && bdata->node_boot_start >= limit)
    		return NULL;
    
    	end_pfn = bdata->node_low_pfn;
    	limit = PFN_DOWN(limit);
    	if (limit && end_pfn > limit)
    		end_pfn = limit;
    
    	eidx = end_pfn - PFN_DOWN(bdata->node_boot_start);
    	offset = 0;
    	if (align && (bdata->node_boot_start & (align - 1UL)) != 0)
    		offset = align - (bdata->node_boot_start & (align - 1UL));
    	offset = PFN_DOWN(offset);
    
    	/*
    	 * We try to allocate bootmem pages above 'goal'
    	 * first, then we try to allocate lower pages.
    	 */
    	if (goal && goal >= bdata->node_boot_start && PFN_DOWN(goal) < end_pfn) {
    		preferred = goal - bdata->node_boot_start;
    
    		if (bdata->last_success >= preferred)
    			if (!limit || (limit && limit > bdata->last_success))
    				preferred = bdata->last_success;
    	} else
    		preferred = 0;
    
    	preferred = PFN_DOWN(ALIGN(preferred, align)) + offset;
    	areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
    	incr = align >> PAGE_SHIFT ? : 1;
    
    restart_scan:
    	for (i = preferred; i < eidx; i += incr) {
    		unsigned long j;
    		i = find_next_zero_bit(bdata->node_bootmem_map, eidx, i);
    		i = ALIGN(i, incr);
    		if (i >= eidx)
    			break;
    		if (test_bit(i, bdata->node_bootmem_map))
    			continue;
    		for (j = i + 1; j < i + areasize; ++j) {
    			if (j >= eidx)
    				goto fail_block;
    			if (test_bit(j, bdata->node_bootmem_map))
    				goto fail_block;
    		}
    		start = i;
    		goto found;
    	fail_block:
    		i = ALIGN(j, incr);
    	}
    
    	if (preferred > offset) {
    		preferred = offset;
    		goto restart_scan;
    	}
    	return NULL;
    
    found:
    	bdata->last_success = PFN_PHYS(start);
    	BUG_ON(start >= eidx);
    
    	/*
    	 * Is the next page of the previous allocation-end the start
    	 * of this allocation's buffer? If yes then we can 'merge'
    	 * the previous partial page with this allocation.
    	 */
    	if (align < PAGE_SIZE &&
    	    bdata->last_offset && bdata->last_pos+1 == start) {
    		offset = ALIGN(bdata->last_offset, align);
    		BUG_ON(offset > PAGE_SIZE);
    		remaining_size = PAGE_SIZE - offset;
    		if (size < remaining_size) {
    			areasize = 0;
    			/* last_pos unchanged */
    			bdata->last_offset = offset + size;
    			ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
    					   offset +
    					   bdata->node_boot_start);
    		} else {
    			remaining_size = size - remaining_size;
    			areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
    			ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
    					   offset +
    					   bdata->node_boot_start);
    			bdata->last_pos = start + areasize - 1;
    			bdata->last_offset = remaining_size;
    		}
    		bdata->last_offset &= ~PAGE_MASK;
    	} else {
    		bdata->last_pos = start + areasize - 1;
    		bdata->last_offset = size & ~PAGE_MASK;
    		ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
    	}
    
    	/*
    	 * Reserve the area now:
    	 */
    	for (i = start; i < start + areasize; i++)
    		if (unlikely(test_and_set_bit(i, bdata->node_bootmem_map)))
    			BUG();
    	memset(ret, 0, size);
    	return ret;
    }
    
    static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
    {
    	struct page *page;
    	unsigned long pfn;
    	bootmem_data_t *bdata = pgdat->bdata;
    	unsigned long i, count, total = 0;
    	unsigned long idx;
    	unsigned long *map; 
    	int gofast = 0;
    
    	BUG_ON(!bdata->node_bootmem_map);
    
    	count = 0;
    	/* first extant page of the node */
    	pfn = PFN_DOWN(bdata->node_boot_start);
    	idx = bdata->node_low_pfn - pfn;
    	map = bdata->node_bootmem_map;
    	/* Check physaddr is O(LOG2(BITS_PER_LONG)) page aligned */
    	if (bdata->node_boot_start == 0 ||
    	    ffs(bdata->node_boot_start) - PAGE_SHIFT > ffs(BITS_PER_LONG))
    		gofast = 1;
    	for (i = 0; i < idx; ) {
    		unsigned long v = ~map[i / BITS_PER_LONG];
    
    		if (gofast && v == ~0UL) {
    			int order;
    
    			page = pfn_to_page(pfn);
    			count += BITS_PER_LONG;
    			order = ffs(BITS_PER_LONG) - 1;
    			__free_pages_bootmem(page, order);
    			i += BITS_PER_LONG;
    			page += BITS_PER_LONG;
    		} else if (v) {
    			unsigned long m;
    
    			page = pfn_to_page(pfn);
    			for (m = 1; m && i < idx; m<<=1, page++, i++) {
    				if (v & m) {
    					count++;
    					__free_pages_bootmem(page, 0);
    				}
    			}
    		} else {
    			i += BITS_PER_LONG;
    		}
    		pfn += BITS_PER_LONG;
    	}
    	total += count;
    
    	/*
    	 * Now free the allocator bitmap itself, it's not
    	 * needed anymore:
    	 */
    	page = virt_to_page(bdata->node_bootmem_map);
    	count = 0;
    	idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
    	for (i = 0; i < idx; i++, page++) {
    		__free_pages_bootmem(page, 0);
    		count++;
    	}
    	total += count;
    	bdata->node_bootmem_map = NULL;
    
    	return total;
    }
    
    unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
    				unsigned long startpfn, unsigned long endpfn)
    {
    	return init_bootmem_core(pgdat, freepfn, startpfn, endpfn);
    }
    
    void __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
    				 unsigned long size)
    {
    	reserve_bootmem_core(pgdat->bdata, physaddr, size);
    }
    
    void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
    			      unsigned long size)
    {
    	free_bootmem_core(pgdat->bdata, physaddr, size);
    }
    
    unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
    {
    	return free_all_bootmem_core(pgdat);
    }
    
    unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
    {
    	max_low_pfn = pages;
    	min_low_pfn = start;
    	return init_bootmem_core(NODE_DATA(0), start, 0, pages);
    }
    
    #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
    void __init reserve_bootmem(unsigned long addr, unsigned long size)
    {
    	reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size);
    }
    #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
    
    void __init free_bootmem(unsigned long addr, unsigned long size)
    {
    	free_bootmem_core(NODE_DATA(0)->bdata, addr, size);
    }
    
    unsigned long __init free_all_bootmem(void)
    {
    	return free_all_bootmem_core(NODE_DATA(0));
    }
    
    void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
    				      unsigned long goal)
    {
    	bootmem_data_t *bdata;
    	void *ptr;
    
    	list_for_each_entry(bdata, &bdata_list, list) {
    		ptr = __alloc_bootmem_core(bdata, size, align, goal, 0);
    		if (ptr)
    			return ptr;
    	}
    	return NULL;
    }
    
    void * __init __alloc_bootmem(unsigned long size, unsigned long align,
    			      unsigned long goal)
    {
    	void *mem = __alloc_bootmem_nopanic(size,align,goal);
    
    	if (mem)
    		return mem;
    	/*
    	 * Whoops, we cannot satisfy the allocation request.
    	 */
    	printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
    	panic("Out of memory");
    	return NULL;
    }
    
    
    void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
    				   unsigned long align, unsigned long goal)
    {
    	void *ptr;
    
    	ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
    	if (ptr)
    		return ptr;
    
    	return __alloc_bootmem(size, align, goal);
    }
    
    #ifndef ARCH_LOW_ADDRESS_LIMIT
    #define ARCH_LOW_ADDRESS_LIMIT	0xffffffffUL
    #endif
    
    void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
    				  unsigned long goal)
    {
    	bootmem_data_t *bdata;
    	void *ptr;
    
    	list_for_each_entry(bdata, &bdata_list, list) {
    		ptr = __alloc_bootmem_core(bdata, size, align, goal,
    						ARCH_LOW_ADDRESS_LIMIT);
    		if (ptr)
    			return ptr;
    	}
    
    	/*
    	 * Whoops, we cannot satisfy the allocation request.
    	 */
    	printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
    	panic("Out of low memory");
    	return NULL;
    }
    
    void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
    				       unsigned long align, unsigned long goal)
    {
    	return __alloc_bootmem_core(pgdat->bdata, size, align, goal,
    				    ARCH_LOW_ADDRESS_LIMIT);
    }