Skip to content
Snippets Groups Projects
Select Git revision
  • 7d380c8f1ed2b6768e1fc496ad373f716160fcf0
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_d18-e71
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-2/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_d18-e83
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-1/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-sai
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • seco_lf-6.6.52-2.2.1_e88-e83-init
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

pmu.h

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    slab.h 20.90 KiB
    /* SPDX-License-Identifier: GPL-2.0 */
    /*
     * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
     *
     * (C) SGI 2006, Christoph Lameter
     * 	Cleaned up and restructured to ease the addition of alternative
     * 	implementations of SLAB allocators.
     * (C) Linux Foundation 2008-2013
     *      Unified interface for all slab allocators
     */
    
    #ifndef _LINUX_SLAB_H
    #define	_LINUX_SLAB_H
    
    #include <linux/gfp.h>
    #include <linux/overflow.h>
    #include <linux/types.h>
    #include <linux/workqueue.h>
    #include <linux/percpu-refcount.h>
    
    
    /*
     * Flags to pass to kmem_cache_create().
     * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
     */
    /* DEBUG: Perform (expensive) checks on alloc/free */
    #define SLAB_CONSISTENCY_CHECKS	((slab_flags_t __force)0x00000100U)
    /* DEBUG: Red zone objs in a cache */
    #define SLAB_RED_ZONE		((slab_flags_t __force)0x00000400U)
    /* DEBUG: Poison objects */
    #define SLAB_POISON		((slab_flags_t __force)0x00000800U)
    /* Align objs on cache lines */
    #define SLAB_HWCACHE_ALIGN	((slab_flags_t __force)0x00002000U)
    /* Use GFP_DMA memory */
    #define SLAB_CACHE_DMA		((slab_flags_t __force)0x00004000U)
    /* Use GFP_DMA32 memory */
    #define SLAB_CACHE_DMA32	((slab_flags_t __force)0x00008000U)
    /* DEBUG: Store the last owner for bug hunting */
    #define SLAB_STORE_USER		((slab_flags_t __force)0x00010000U)
    /* Panic if kmem_cache_create() fails */
    #define SLAB_PANIC		((slab_flags_t __force)0x00040000U)
    /*
     * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
     *
     * This delays freeing the SLAB page by a grace period, it does _NOT_
     * delay object freeing. This means that if you do kmem_cache_free()
     * that memory location is free to be reused at any time. Thus it may
     * be possible to see another object there in the same RCU grace period.
     *
     * This feature only ensures the memory location backing the object
     * stays valid, the trick to using this is relying on an independent
     * object validation pass. Something like:
     *
     *  rcu_read_lock()
     * again:
     *  obj = lockless_lookup(key);
     *  if (obj) {
     *    if (!try_get_ref(obj)) // might fail for free objects
     *      goto again;
     *
     *    if (obj->key != key) { // not the object we expected
     *      put_ref(obj);
     *      goto again;
     *    }
     *  }
     *  rcu_read_unlock();
     *
     * This is useful if we need to approach a kernel structure obliquely,
     * from its address obtained without the usual locking. We can lock
     * the structure to stabilize it and check it's still at the given address,
     * only if we can be sure that the memory has not been meanwhile reused
     * for some other kind of object (which our subsystem's lock might corrupt).
     *
     * rcu_read_lock before reading the address, then rcu_read_unlock after
     * taking the spinlock within the structure expected at that address.
     *
     * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
     */
    /* Defer freeing slabs to RCU */
    #define SLAB_TYPESAFE_BY_RCU	((slab_flags_t __force)0x00080000U)
    /* Spread some memory over cpuset */
    #define SLAB_MEM_SPREAD		((slab_flags_t __force)0x00100000U)
    /* Trace allocations and frees */
    #define SLAB_TRACE		((slab_flags_t __force)0x00200000U)
    
    /* Flag to prevent checks on free */
    #ifdef CONFIG_DEBUG_OBJECTS
    # define SLAB_DEBUG_OBJECTS	((slab_flags_t __force)0x00400000U)
    #else
    # define SLAB_DEBUG_OBJECTS	0
    #endif
    
    /* Avoid kmemleak tracing */
    #define SLAB_NOLEAKTRACE	((slab_flags_t __force)0x00800000U)
    
    /* Fault injection mark */
    #ifdef CONFIG_FAILSLAB
    # define SLAB_FAILSLAB		((slab_flags_t __force)0x02000000U)
    #else
    # define SLAB_FAILSLAB		0
    #endif
    /* Account to memcg */
    #ifdef CONFIG_MEMCG_KMEM
    # define SLAB_ACCOUNT		((slab_flags_t __force)0x04000000U)
    #else
    # define SLAB_ACCOUNT		0
    #endif
    
    #ifdef CONFIG_KASAN
    #define SLAB_KASAN		((slab_flags_t __force)0x08000000U)
    #else
    #define SLAB_KASAN		0
    #endif
    
    /* The following flags affect the page allocator grouping pages by mobility */
    /* Objects are reclaimable */
    #define SLAB_RECLAIM_ACCOUNT	((slab_flags_t __force)0x00020000U)
    #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
    
    /* Slab deactivation flag */
    #define SLAB_DEACTIVATED	((slab_flags_t __force)0x10000000U)
    
    /*
     * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
     *
     * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
     *
     * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
     * Both make kfree a no-op.
     */
    #define ZERO_SIZE_PTR ((void *)16)
    
    #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
    				(unsigned long)ZERO_SIZE_PTR)
    
    #include <linux/kasan.h>
    
    struct mem_cgroup;
    /*
     * struct kmem_cache related prototypes
     */
    void __init kmem_cache_init(void);
    bool slab_is_available(void);
    
    extern bool usercopy_fallback;
    
    struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
    			unsigned int align, slab_flags_t flags,
    			void (*ctor)(void *));
    struct kmem_cache *kmem_cache_create_usercopy(const char *name,
    			unsigned int size, unsigned int align,
    			slab_flags_t flags,
    			unsigned int useroffset, unsigned int usersize,
    			void (*ctor)(void *));
    void kmem_cache_destroy(struct kmem_cache *);
    int kmem_cache_shrink(struct kmem_cache *);
    
    void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
    void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *);
    
    /*
     * Please use this macro to create slab caches. Simply specify the
     * name of the structure and maybe some flags that are listed above.
     *
     * The alignment of the struct determines object alignment. If you
     * f.e. add ____cacheline_aligned_in_smp to the struct declaration
     * then the objects will be properly aligned in SMP configurations.
     */
    #define KMEM_CACHE(__struct, __flags)					\
    		kmem_cache_create(#__struct, sizeof(struct __struct),	\
    			__alignof__(struct __struct), (__flags), NULL)
    
    /*
     * To whitelist a single field for copying to/from usercopy, use this
     * macro instead for KMEM_CACHE() above.
     */
    #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)			\
    		kmem_cache_create_usercopy(#__struct,			\
    			sizeof(struct __struct),			\
    			__alignof__(struct __struct), (__flags),	\
    			offsetof(struct __struct, __field),		\
    			sizeof_field(struct __struct, __field), NULL)
    
    /*
     * Common kmalloc functions provided by all allocators
     */
    void * __must_check __krealloc(const void *, size_t, gfp_t);
    void * __must_check krealloc(const void *, size_t, gfp_t);
    void kfree(const void *);
    void kzfree(const void *);
    size_t __ksize(const void *);
    size_t ksize(const void *);
    
    #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
    void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
    			bool to_user);
    #else
    static inline void __check_heap_object(const void *ptr, unsigned long n,
    				       struct page *page, bool to_user) { }
    #endif
    
    /*
     * Some archs want to perform DMA into kmalloc caches and need a guaranteed
     * alignment larger than the alignment of a 64-bit integer.
     * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
     */
    #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
    #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
    #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
    #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
    #else
    #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
    #endif
    
    /*
     * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
     * Intended for arches that get misalignment faults even for 64 bit integer
     * aligned buffers.
     */
    #ifndef ARCH_SLAB_MINALIGN
    #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
    #endif
    
    /*
     * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
     * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
     * aligned pointers.
     */
    #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
    #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
    #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
    
    /*
     * Kmalloc array related definitions
     */
    
    #ifdef CONFIG_SLAB
    /*
     * The largest kmalloc size supported by the SLAB allocators is
     * 32 megabyte (2^25) or the maximum allocatable page order if that is
     * less than 32 MB.
     *
     * WARNING: Its not easy to increase this value since the allocators have
     * to do various tricks to work around compiler limitations in order to
     * ensure proper constant folding.
     */
    #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
    				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
    #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
    #ifndef KMALLOC_SHIFT_LOW
    #define KMALLOC_SHIFT_LOW	5
    #endif
    #endif
    
    #ifdef CONFIG_SLUB
    /*
     * SLUB directly allocates requests fitting in to an order-1 page
     * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
     */
    #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
    #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
    #ifndef KMALLOC_SHIFT_LOW
    #define KMALLOC_SHIFT_LOW	3
    #endif
    #endif
    
    #ifdef CONFIG_SLOB
    /*
     * SLOB passes all requests larger than one page to the page allocator.
     * No kmalloc array is necessary since objects of different sizes can
     * be allocated from the same page.
     */
    #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
    #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT - 1)
    #ifndef KMALLOC_SHIFT_LOW
    #define KMALLOC_SHIFT_LOW	3
    #endif
    #endif
    
    /* Maximum allocatable size */
    #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
    /* Maximum size for which we actually use a slab cache */
    #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
    /* Maximum order allocatable via the slab allocagtor */
    #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
    
    /*
     * Kmalloc subsystem.
     */
    #ifndef KMALLOC_MIN_SIZE
    #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
    #endif
    
    /*
     * This restriction comes from byte sized index implementation.
     * Page size is normally 2^12 bytes and, in this case, if we want to use
     * byte sized index which can represent 2^8 entries, the size of the object
     * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
     * If minimum size of kmalloc is less than 16, we use it as minimum object
     * size and give up to use byte sized index.
     */
    #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                                   (KMALLOC_MIN_SIZE) : 16)
    
    /*
     * Whenever changing this, take care of that kmalloc_type() and
     * create_kmalloc_caches() still work as intended.
     */
    enum kmalloc_cache_type {
    	KMALLOC_NORMAL = 0,
    	KMALLOC_RECLAIM,
    #ifdef CONFIG_ZONE_DMA
    	KMALLOC_DMA,
    #endif
    	NR_KMALLOC_TYPES
    };
    
    #ifndef CONFIG_SLOB
    extern struct kmem_cache *
    kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
    
    static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
    {
    #ifdef CONFIG_ZONE_DMA
    	/*
    	 * The most common case is KMALLOC_NORMAL, so test for it
    	 * with a single branch for both flags.
    	 */
    	if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
    		return KMALLOC_NORMAL;
    
    	/*
    	 * At least one of the flags has to be set. If both are, __GFP_DMA
    	 * is more important.
    	 */
    	return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
    #else
    	return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
    #endif
    }
    
    /*
     * Figure out which kmalloc slab an allocation of a certain size
     * belongs to.
     * 0 = zero alloc
     * 1 =  65 .. 96 bytes
     * 2 = 129 .. 192 bytes
     * n = 2^(n-1)+1 .. 2^n
     */
    static __always_inline unsigned int kmalloc_index(size_t size)
    {
    	if (!size)
    		return 0;
    
    	if (size <= KMALLOC_MIN_SIZE)
    		return KMALLOC_SHIFT_LOW;
    
    	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
    		return 1;
    	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
    		return 2;
    	if (size <=          8) return 3;
    	if (size <=         16) return 4;
    	if (size <=         32) return 5;
    	if (size <=         64) return 6;
    	if (size <=        128) return 7;
    	if (size <=        256) return 8;
    	if (size <=        512) return 9;
    	if (size <=       1024) return 10;
    	if (size <=   2 * 1024) return 11;
    	if (size <=   4 * 1024) return 12;
    	if (size <=   8 * 1024) return 13;
    	if (size <=  16 * 1024) return 14;
    	if (size <=  32 * 1024) return 15;
    	if (size <=  64 * 1024) return 16;
    	if (size <= 128 * 1024) return 17;
    	if (size <= 256 * 1024) return 18;
    	if (size <= 512 * 1024) return 19;
    	if (size <= 1024 * 1024) return 20;
    	if (size <=  2 * 1024 * 1024) return 21;
    	if (size <=  4 * 1024 * 1024) return 22;
    	if (size <=  8 * 1024 * 1024) return 23;
    	if (size <=  16 * 1024 * 1024) return 24;
    	if (size <=  32 * 1024 * 1024) return 25;
    	if (size <=  64 * 1024 * 1024) return 26;
    	BUG();
    
    	/* Will never be reached. Needed because the compiler may complain */
    	return -1;
    }
    #endif /* !CONFIG_SLOB */
    
    void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
    void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
    void kmem_cache_free(struct kmem_cache *, void *);
    
    /*
     * Bulk allocation and freeing operations. These are accelerated in an
     * allocator specific way to avoid taking locks repeatedly or building
     * metadata structures unnecessarily.
     *
     * Note that interrupts must be enabled when calling these functions.
     */
    void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
    int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
    
    /*
     * Caller must not use kfree_bulk() on memory not originally allocated
     * by kmalloc(), because the SLOB allocator cannot handle this.
     */
    static __always_inline void kfree_bulk(size_t size, void **p)
    {
    	kmem_cache_free_bulk(NULL, size, p);
    }
    
    #ifdef CONFIG_NUMA
    void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
    void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
    #else
    static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
    {
    	return __kmalloc(size, flags);
    }
    
    static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
    {
    	return kmem_cache_alloc(s, flags);
    }
    #endif
    
    #ifdef CONFIG_TRACING
    extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
    
    #ifdef CONFIG_NUMA
    extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
    					   gfp_t gfpflags,
    					   int node, size_t size) __assume_slab_alignment __malloc;
    #else
    static __always_inline void *
    kmem_cache_alloc_node_trace(struct kmem_cache *s,
    			      gfp_t gfpflags,
    			      int node, size_t size)
    {
    	return kmem_cache_alloc_trace(s, gfpflags, size);
    }
    #endif /* CONFIG_NUMA */
    
    #else /* CONFIG_TRACING */
    static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
    		gfp_t flags, size_t size)
    {
    	void *ret = kmem_cache_alloc(s, flags);
    
    	ret = kasan_kmalloc(s, ret, size, flags);
    	return ret;
    }
    
    static __always_inline void *
    kmem_cache_alloc_node_trace(struct kmem_cache *s,
    			      gfp_t gfpflags,
    			      int node, size_t size)
    {
    	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
    
    	ret = kasan_kmalloc(s, ret, size, gfpflags);
    	return ret;
    }
    #endif /* CONFIG_TRACING */
    
    extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
    
    #ifdef CONFIG_TRACING
    extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
    #else
    static __always_inline void *
    kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
    {
    	return kmalloc_order(size, flags, order);
    }
    #endif
    
    static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
    {
    	unsigned int order = get_order(size);
    	return kmalloc_order_trace(size, flags, order);
    }
    
    /**
     * kmalloc - allocate memory
     * @size: how many bytes of memory are required.
     * @flags: the type of memory to allocate.
     *
     * kmalloc is the normal method of allocating memory
     * for objects smaller than page size in the kernel.
     *
     * The @flags argument may be one of the GFP flags defined at
     * include/linux/gfp.h and described at
     * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
     *
     * The recommended usage of the @flags is described at
     * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
     *
     * Below is a brief outline of the most useful GFP flags
     *
     * %GFP_KERNEL
     *	Allocate normal kernel ram. May sleep.
     *
     * %GFP_NOWAIT
     *	Allocation will not sleep.
     *
     * %GFP_ATOMIC
     *	Allocation will not sleep.  May use emergency pools.
     *
     * %GFP_HIGHUSER
     *	Allocate memory from high memory on behalf of user.
     *
     * Also it is possible to set different flags by OR'ing
     * in one or more of the following additional @flags:
     *
     * %__GFP_HIGH
     *	This allocation has high priority and may use emergency pools.
     *
     * %__GFP_NOFAIL
     *	Indicate that this allocation is in no way allowed to fail
     *	(think twice before using).
     *
     * %__GFP_NORETRY
     *	If memory is not immediately available,
     *	then give up at once.
     *
     * %__GFP_NOWARN
     *	If allocation fails, don't issue any warnings.
     *
     * %__GFP_RETRY_MAYFAIL
     *	Try really hard to succeed the allocation but fail
     *	eventually.
     */
    static __always_inline void *kmalloc(size_t size, gfp_t flags)
    {
    	if (__builtin_constant_p(size)) {
    #ifndef CONFIG_SLOB
    		unsigned int index;
    #endif
    		if (size > KMALLOC_MAX_CACHE_SIZE)
    			return kmalloc_large(size, flags);
    #ifndef CONFIG_SLOB
    		index = kmalloc_index(size);
    
    		if (!index)
    			return ZERO_SIZE_PTR;
    
    		return kmem_cache_alloc_trace(
    				kmalloc_caches[kmalloc_type(flags)][index],
    				flags, size);
    #endif
    	}
    	return __kmalloc(size, flags);
    }
    
    /*
     * Determine size used for the nth kmalloc cache.
     * return size or 0 if a kmalloc cache for that
     * size does not exist
     */
    static __always_inline unsigned int kmalloc_size(unsigned int n)
    {
    #ifndef CONFIG_SLOB
    	if (n > 2)
    		return 1U << n;
    
    	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
    		return 96;
    
    	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
    		return 192;
    #endif
    	return 0;
    }
    
    static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
    {
    #ifndef CONFIG_SLOB
    	if (__builtin_constant_p(size) &&
    		size <= KMALLOC_MAX_CACHE_SIZE) {
    		unsigned int i = kmalloc_index(size);
    
    		if (!i)
    			return ZERO_SIZE_PTR;
    
    		return kmem_cache_alloc_node_trace(
    				kmalloc_caches[kmalloc_type(flags)][i],
    						flags, node, size);
    	}
    #endif
    	return __kmalloc_node(size, flags, node);
    }
    
    int memcg_update_all_caches(int num_memcgs);
    
    /**
     * kmalloc_array - allocate memory for an array.
     * @n: number of elements.
     * @size: element size.
     * @flags: the type of memory to allocate (see kmalloc).
     */
    static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
    {
    	size_t bytes;
    
    	if (unlikely(check_mul_overflow(n, size, &bytes)))
    		return NULL;
    	if (__builtin_constant_p(n) && __builtin_constant_p(size))
    		return kmalloc(bytes, flags);
    	return __kmalloc(bytes, flags);
    }
    
    /**
     * kcalloc - allocate memory for an array. The memory is set to zero.
     * @n: number of elements.
     * @size: element size.
     * @flags: the type of memory to allocate (see kmalloc).
     */
    static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
    {
    	return kmalloc_array(n, size, flags | __GFP_ZERO);
    }
    
    /*
     * kmalloc_track_caller is a special version of kmalloc that records the
     * calling function of the routine calling it for slab leak tracking instead
     * of just the calling function (confusing, eh?).
     * It's useful when the call to kmalloc comes from a widely-used standard
     * allocator where we care about the real place the memory allocation
     * request comes from.
     */
    extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
    #define kmalloc_track_caller(size, flags) \
    	__kmalloc_track_caller(size, flags, _RET_IP_)
    
    static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
    				       int node)
    {
    	size_t bytes;
    
    	if (unlikely(check_mul_overflow(n, size, &bytes)))
    		return NULL;
    	if (__builtin_constant_p(n) && __builtin_constant_p(size))
    		return kmalloc_node(bytes, flags, node);
    	return __kmalloc_node(bytes, flags, node);
    }
    
    static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
    {
    	return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
    }
    
    
    #ifdef CONFIG_NUMA
    extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
    #define kmalloc_node_track_caller(size, flags, node) \
    	__kmalloc_node_track_caller(size, flags, node, \
    			_RET_IP_)
    
    #else /* CONFIG_NUMA */
    
    #define kmalloc_node_track_caller(size, flags, node) \
    	kmalloc_track_caller(size, flags)
    
    #endif /* CONFIG_NUMA */
    
    /*
     * Shortcuts
     */
    static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
    {
    	return kmem_cache_alloc(k, flags | __GFP_ZERO);
    }
    
    /**
     * kzalloc - allocate memory. The memory is set to zero.
     * @size: how many bytes of memory are required.
     * @flags: the type of memory to allocate (see kmalloc).
     */
    static inline void *kzalloc(size_t size, gfp_t flags)
    {
    	return kmalloc(size, flags | __GFP_ZERO);
    }
    
    /**
     * kzalloc_node - allocate zeroed memory from a particular memory node.
     * @size: how many bytes of memory are required.
     * @flags: the type of memory to allocate (see kmalloc).
     * @node: memory node from which to allocate
     */
    static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
    {
    	return kmalloc_node(size, flags | __GFP_ZERO, node);
    }
    
    unsigned int kmem_cache_size(struct kmem_cache *s);
    void __init kmem_cache_init_late(void);
    
    #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
    int slab_prepare_cpu(unsigned int cpu);
    int slab_dead_cpu(unsigned int cpu);
    #else
    #define slab_prepare_cpu	NULL
    #define slab_dead_cpu		NULL
    #endif
    
    #endif	/* _LINUX_SLAB_H */