Skip to content
Snippets Groups Projects
Select Git revision
  • 70f2817a43c89b784dc2ec3d06ba5bf3064f8235
  • seco_lf-6.6.52-2.2.1 default protected
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/oleksii/fix-mtk-misc-artifacts/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-dtb
  • seco_lf-6.6.52-2.2.1-tr8mp-fpga
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1-tr8mp-rv3028
  • seco_lf-6.6.52-2.2.1-tr8mp-mcu
  • seco_lf-6.6.23-2.0.0_e39-e83-p4-devicetree
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_e88-dev
  • seco_lf-6.6.52-2.2.1_ov5640-mx95-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-rgb-defconfig
  • seco_lf-6.6.52-2.2.1-tr8mp-dev
  • seco_lf-6.6.52-2.2.1-tr8mp-dtbo
  • seco_lf-6.6.52-2.2.1_stm32g0-dev
  • seco_lf-6.6.52-2.2.1_remove-mwifiex_d18
  • seco_lf-6.6.52-2.2.1_e88-dbg-uart-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

scan.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    scan.c 32.49 KiB
    /*
     * scan.c - support for transforming the ACPI namespace into individual objects
     */
    
    #include <linux/module.h>
    #include <linux/init.h>
    #include <linux/acpi.h>
    
    #include <acpi/acpi_drivers.h>
    #include <acpi/acinterp.h>	/* for acpi_ex_eisa_id_to_string() */
    
    
    #define _COMPONENT		ACPI_BUS_COMPONENT
    ACPI_MODULE_NAME		("scan")
    
    #define STRUCT_TO_INT(s)	(*((int*)&s))
    
    extern struct acpi_device		*acpi_root;
    
    
    #define ACPI_BUS_CLASS			"system_bus"
    #define ACPI_BUS_HID			"ACPI_BUS"
    #define ACPI_BUS_DRIVER_NAME		"ACPI Bus Driver"
    #define ACPI_BUS_DEVICE_NAME		"System Bus"
    
    static LIST_HEAD(acpi_device_list);
    DEFINE_SPINLOCK(acpi_device_lock);
    LIST_HEAD(acpi_wakeup_device_list);
    
    static int
    acpi_bus_trim(struct acpi_device	*start,
    		int rmdevice);
    
    static void acpi_device_release(struct kobject * kobj)
    {
    	struct acpi_device * dev = container_of(kobj,struct acpi_device,kobj);
    	if (dev->pnp.cid_list)
    		kfree(dev->pnp.cid_list);
    	kfree(dev);
    }
    
    struct acpi_device_attribute {
    	struct attribute attr;
    	ssize_t (*show)(struct acpi_device *, char *);
    	ssize_t (*store)(struct acpi_device *, const char *, size_t);
    };
    
    typedef void acpi_device_sysfs_files(struct kobject *,
    				const struct attribute *);
    
    static void setup_sys_fs_device_files(struct acpi_device *dev,
    		acpi_device_sysfs_files *func);
    
    #define create_sysfs_device_files(dev)	\
    	setup_sys_fs_device_files(dev, (acpi_device_sysfs_files *)&sysfs_create_file)
    #define remove_sysfs_device_files(dev)	\
    	setup_sys_fs_device_files(dev, (acpi_device_sysfs_files *)&sysfs_remove_file)
    
    
    #define to_acpi_device(n) container_of(n, struct acpi_device, kobj)
    #define to_handle_attr(n) container_of(n, struct acpi_device_attribute, attr);
    
    static ssize_t acpi_device_attr_show(struct kobject *kobj,
    		struct attribute *attr, char *buf)
    {
    	struct acpi_device *device = to_acpi_device(kobj);
    	struct acpi_device_attribute *attribute = to_handle_attr(attr);
    	return attribute->show ? attribute->show(device, buf) : -EIO;
    }
    static ssize_t acpi_device_attr_store(struct kobject *kobj,
    		struct attribute *attr, const char *buf, size_t len)
    {
    	struct acpi_device *device = to_acpi_device(kobj);
    	struct acpi_device_attribute *attribute = to_handle_attr(attr);
    	return attribute->store ? attribute->store(device, buf, len) : -EIO;
    }
    
    static struct sysfs_ops acpi_device_sysfs_ops = {
    	.show	= acpi_device_attr_show,
    	.store	= acpi_device_attr_store,
    };
    
    static struct kobj_type ktype_acpi_ns = {
    	.sysfs_ops	= &acpi_device_sysfs_ops,
    	.release	= acpi_device_release,
    };
    
    static int namespace_hotplug(struct kset *kset, struct kobject *kobj,
    			     char **envp, int num_envp, char *buffer,
    			     int buffer_size)
    {
    	struct acpi_device *dev = to_acpi_device(kobj);
    	int i = 0;
    	int len = 0;
    
    	if (!dev->driver)
    		return 0;
    
    	if (add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, &len,
    				"PHYSDEVDRIVER=%s", dev->driver->name))
    		return -ENOMEM;
    
    	envp[i] = NULL;
    
    	return 0;
    }
    
    static struct kset_hotplug_ops namespace_hotplug_ops = {
    	.hotplug = &namespace_hotplug,
    };
    
    static struct kset acpi_namespace_kset = {
    	.kobj		= { 
    		.name = "namespace",
    	},
    	.subsys = &acpi_subsys,
    	.ktype	= &ktype_acpi_ns,
    	.hotplug_ops = &namespace_hotplug_ops,
    };
    
    
    static void acpi_device_register(struct acpi_device * device, struct acpi_device * parent)
    {
    	/*
    	 * Linkage
    	 * -------
    	 * Link this device to its parent and siblings.
    	 */
    	INIT_LIST_HEAD(&device->children);
    	INIT_LIST_HEAD(&device->node);
    	INIT_LIST_HEAD(&device->g_list);
    	INIT_LIST_HEAD(&device->wakeup_list);
    
    	spin_lock(&acpi_device_lock);
    	if (device->parent) {
    		list_add_tail(&device->node, &device->parent->children);
    		list_add_tail(&device->g_list,&device->parent->g_list);
    	} else
    		list_add_tail(&device->g_list,&acpi_device_list);
    	if (device->wakeup.flags.valid)
    		list_add_tail(&device->wakeup_list,&acpi_wakeup_device_list);
    	spin_unlock(&acpi_device_lock);
    
    	strlcpy(device->kobj.name,device->pnp.bus_id,KOBJ_NAME_LEN);
    	if (parent)
    		device->kobj.parent = &parent->kobj;
    	device->kobj.ktype = &ktype_acpi_ns;
    	device->kobj.kset = &acpi_namespace_kset;
    	kobject_register(&device->kobj);
    	create_sysfs_device_files(device);
    }
    
    static int
    acpi_device_unregister (
    	struct acpi_device	*device, 
    	int			type)
    {
    	spin_lock(&acpi_device_lock);
    	if (device->parent) {
    		list_del(&device->node);
    		list_del(&device->g_list);
    	} else
    		list_del(&device->g_list);
    
    	list_del(&device->wakeup_list);
    
    	spin_unlock(&acpi_device_lock);
    
    	acpi_detach_data(device->handle, acpi_bus_data_handler);
    	remove_sysfs_device_files(device);
    	kobject_unregister(&device->kobj);
    	return 0;
    }
    
    void
    acpi_bus_data_handler (
    	acpi_handle		handle,
    	u32			function,
    	void			*context)
    {
    	ACPI_FUNCTION_TRACE("acpi_bus_data_handler");
    
    	/* TBD */
    
    	return_VOID;
    }
    
    static int
    acpi_bus_get_power_flags (
    	struct acpi_device	*device)
    {
    	acpi_status             status = 0;
    	acpi_handle		handle = NULL;
    	u32                     i = 0;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_get_power_flags");
    
    	/*
    	 * Power Management Flags
    	 */
    	status = acpi_get_handle(device->handle, "_PSC", &handle);
    	if (ACPI_SUCCESS(status))
    		device->power.flags.explicit_get = 1;
    	status = acpi_get_handle(device->handle, "_IRC", &handle);
    	if (ACPI_SUCCESS(status))
    		device->power.flags.inrush_current = 1;
    
    	/*
    	 * Enumerate supported power management states
    	 */
    	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3; i++) {
    		struct acpi_device_power_state *ps = &device->power.states[i];
    		char		object_name[5] = {'_','P','R','0'+i,'\0'};
    
    		/* Evaluate "_PRx" to se if power resources are referenced */
    		acpi_evaluate_reference(device->handle, object_name, NULL,
    			&ps->resources);
    		if (ps->resources.count) {
    			device->power.flags.power_resources = 1;
    			ps->flags.valid = 1;
    		}
    
    		/* Evaluate "_PSx" to see if we can do explicit sets */
    		object_name[2] = 'S';
    		status = acpi_get_handle(device->handle, object_name, &handle);
    		if (ACPI_SUCCESS(status)) {
    			ps->flags.explicit_set = 1;
    			ps->flags.valid = 1;
    		}
    
    		/* State is valid if we have some power control */
    		if (ps->resources.count || ps->flags.explicit_set)
    			ps->flags.valid = 1;
    
    		ps->power = -1;		/* Unknown - driver assigned */
    		ps->latency = -1;	/* Unknown - driver assigned */
    	}
    
    	/* Set defaults for D0 and D3 states (always valid) */
    	device->power.states[ACPI_STATE_D0].flags.valid = 1;
    	device->power.states[ACPI_STATE_D0].power = 100;
    	device->power.states[ACPI_STATE_D3].flags.valid = 1;
    	device->power.states[ACPI_STATE_D3].power = 0;
    
    	/* TBD: System wake support and resource requirements. */
    
    	device->power.state = ACPI_STATE_UNKNOWN;
    
    	return_VALUE(0);
    }
    
    int
    acpi_match_ids (
    	struct acpi_device	*device,
    	char			*ids)
    {
    	int error = 0;
    	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
    
    	if (device->flags.hardware_id)
    		if (strstr(ids, device->pnp.hardware_id))
    			goto Done;
    
    	if (device->flags.compatible_ids) {
    		struct acpi_compatible_id_list *cid_list = device->pnp.cid_list;
    		int i;
    
    		/* compare multiple _CID entries against driver ids */
    		for (i = 0; i < cid_list->count; i++)
    		{
    			if (strstr(ids, cid_list->id[i].value))
    				goto Done;
    		}
    	}
    	error = -ENOENT;
    
     Done:
    	if (buffer.pointer)
    		acpi_os_free(buffer.pointer);
    	return error;
    }
    
    static acpi_status
    acpi_bus_extract_wakeup_device_power_package (
    	struct acpi_device	*device,
    	union acpi_object	*package)
    {
    	int 	 i = 0;
    	union acpi_object	*element = NULL;
    
    	if (!device || !package || (package->package.count < 2))
    		return AE_BAD_PARAMETER;
    
    	element = &(package->package.elements[0]);
    	if (!element)
    		return AE_BAD_PARAMETER;
    	if (element->type == ACPI_TYPE_PACKAGE) {
    		if ((element->package.count < 2) ||
    			(element->package.elements[0].type != ACPI_TYPE_LOCAL_REFERENCE) ||
    			(element->package.elements[1].type != ACPI_TYPE_INTEGER))
    			return AE_BAD_DATA;
    		device->wakeup.gpe_device = element->package.elements[0].reference.handle;
    		device->wakeup.gpe_number = (u32)element->package.elements[1].integer.value;
    	}else if (element->type == ACPI_TYPE_INTEGER) {
    		device->wakeup.gpe_number = element->integer.value;
    	}else
    		return AE_BAD_DATA;
    
    	element = &(package->package.elements[1]);
    	if (element->type != ACPI_TYPE_INTEGER) {
    		return AE_BAD_DATA;
    	}
    	device->wakeup.sleep_state = element->integer.value;
    
    	if ((package->package.count - 2) > ACPI_MAX_HANDLES) {
    		return AE_NO_MEMORY;
    	}
    	device->wakeup.resources.count = package->package.count - 2;
    	for (i=0; i < device->wakeup.resources.count; i++) {
    		element = &(package->package.elements[i + 2]);
    		if (element->type != ACPI_TYPE_ANY ) {
    			return AE_BAD_DATA;
    		}
    
    		device->wakeup.resources.handles[i] = element->reference.handle;
    	}
    
    	return AE_OK;
    }
    
    static int
    acpi_bus_get_wakeup_device_flags (
    	struct acpi_device	*device)
    {
    	acpi_status	status = 0;
    	struct acpi_buffer	buffer = {ACPI_ALLOCATE_BUFFER, NULL};
    	union acpi_object	*package = NULL;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_get_wakeup_flags");
    
    	/* _PRW */
    	status = acpi_evaluate_object(device->handle, "_PRW", NULL, &buffer);
    	if (ACPI_FAILURE(status)) {
    		ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error evaluating _PRW\n"));
    		goto end;
    	}
    
    	package = (union acpi_object *) buffer.pointer;
    	status = acpi_bus_extract_wakeup_device_power_package(device, package);
    	if (ACPI_FAILURE(status)) {
    		ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Error extracting _PRW package\n"));
    		goto end;
    	}
    
    	acpi_os_free(buffer.pointer);
    
    	device->wakeup.flags.valid = 1;
    	/* Power button, Lid switch always enable wakeup*/
    	if (!acpi_match_ids(device, "PNP0C0D,PNP0C0C,PNP0C0E"))
    		device->wakeup.flags.run_wake = 1;
    
    end:
    	if (ACPI_FAILURE(status))
    		device->flags.wake_capable = 0;
    	return_VALUE(0);
    }
    
    /* --------------------------------------------------------------------------
    		ACPI hotplug sysfs device file support
       -------------------------------------------------------------------------- */
    static ssize_t acpi_eject_store(struct acpi_device *device, 
    		const char *buf, size_t count);
    
    #define ACPI_DEVICE_ATTR(_name,_mode,_show,_store) \
    static struct acpi_device_attribute acpi_device_attr_##_name = \
    		__ATTR(_name, _mode, _show, _store)
    
    ACPI_DEVICE_ATTR(eject, 0200, NULL, acpi_eject_store);
    
    /**
     * setup_sys_fs_device_files - sets up the device files under device namespace
     * @dev:	acpi_device object
     * @func:	function pointer to create or destroy the device file
     */
    static void
    setup_sys_fs_device_files (
    	struct acpi_device *dev,
    	acpi_device_sysfs_files *func)
    {
    	acpi_status		status;
    	acpi_handle		temp = NULL;
    
    	/*
    	 * If device has _EJ0, 'eject' file is created that is used to trigger
    	 * hot-removal function from userland.
    	 */
    	status = acpi_get_handle(dev->handle, "_EJ0", &temp);
    	if (ACPI_SUCCESS(status))
    		(*(func))(&dev->kobj,&acpi_device_attr_eject.attr);
    }
    
    static int
    acpi_eject_operation(acpi_handle handle, int lockable)
    {
    	struct acpi_object_list arg_list;
    	union acpi_object arg;
    	acpi_status status = AE_OK;
    
    	/*
    	 * TBD: evaluate _PS3?
    	 */
    
    	if (lockable) {
    		arg_list.count = 1;
    		arg_list.pointer = &arg;
    		arg.type = ACPI_TYPE_INTEGER;
    		arg.integer.value = 0;
    		acpi_evaluate_object(handle, "_LCK", &arg_list, NULL);
    	}
    
    	arg_list.count = 1;
    	arg_list.pointer = &arg;
    	arg.type = ACPI_TYPE_INTEGER;
    	arg.integer.value = 1;
    
    	/*
    	 * TBD: _EJD support.
    	 */
    
    	status = acpi_evaluate_object(handle, "_EJ0", &arg_list, NULL);
    	if (ACPI_FAILURE(status)) {
    		return(-ENODEV);
    	}
    
    	return(0);
    }
    
    
    static ssize_t
    acpi_eject_store(struct acpi_device *device, const char *buf, size_t count)
    {
    	int	result;
    	int	ret = count;
    	int	islockable;
    	acpi_status	status;
    	acpi_handle	handle;
    	acpi_object_type	type = 0;
    
    	if ((!count) || (buf[0] != '1')) {
    		return -EINVAL;
    	}
    
    #ifndef FORCE_EJECT
    	if (device->driver == NULL) {
    		ret = -ENODEV;
    		goto err;
    	}
    #endif
    	status = acpi_get_type(device->handle, &type);
    	if (ACPI_FAILURE(status) || (!device->flags.ejectable) ) {
    		ret = -ENODEV;
    		goto err;
    	}
    
    	islockable = device->flags.lockable;
    	handle = device->handle;
    
    	if (type == ACPI_TYPE_PROCESSOR)
    		result = acpi_bus_trim(device, 0);
    	else
    		result = acpi_bus_trim(device, 1);
    
    	if (!result)
    		result = acpi_eject_operation(handle, islockable);
    
    	if (result) {
    		ret = -EBUSY;
    	}
    err:
    	return ret;
    }
    
    
    /* --------------------------------------------------------------------------
                                  Performance Management
       -------------------------------------------------------------------------- */
    
    static int
    acpi_bus_get_perf_flags (
    	struct acpi_device	*device)
    {
    	device->performance.state = ACPI_STATE_UNKNOWN;
    	return 0;
    }
    
    /* --------------------------------------------------------------------------
                                     Driver Management
       -------------------------------------------------------------------------- */
    
    static LIST_HEAD(acpi_bus_drivers);
    static DECLARE_MUTEX(acpi_bus_drivers_lock);
    
    
    /**
     * acpi_bus_match 
     * --------------
     * Checks the device's hardware (_HID) or compatible (_CID) ids to see if it
     * matches the specified driver's criteria.
     */
    static int
    acpi_bus_match (
    	struct acpi_device	*device,
    	struct acpi_driver	*driver)
    {
    	if (driver && driver->ops.match)
    		return driver->ops.match(device, driver);
    	return acpi_match_ids(device, driver->ids);
    }
    
    
    /**
     * acpi_bus_driver_init 
     * --------------------
     * Used to initialize a device via its device driver.  Called whenever a 
     * driver is bound to a device.  Invokes the driver's add() and start() ops.
     */
    static int
    acpi_bus_driver_init (
    	struct acpi_device	*device, 
    	struct acpi_driver	*driver)
    {
    	int			result = 0;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_driver_init");
    
    	if (!device || !driver)
    		return_VALUE(-EINVAL);
    
    	if (!driver->ops.add)
    		return_VALUE(-ENOSYS);
    
    	result = driver->ops.add(device);
    	if (result) {
    		device->driver = NULL;
    		acpi_driver_data(device) = NULL;
    		return_VALUE(result);
    	}
    
    	device->driver = driver;
    
    	/*
    	 * TBD - Configuration Management: Assign resources to device based
    	 * upon possible configuration and currently allocated resources.
    	 */
    
    	if (driver->ops.start) {
    		result = driver->ops.start(device);
    		if (result && driver->ops.remove)
    			driver->ops.remove(device, ACPI_BUS_REMOVAL_NORMAL);
    		return_VALUE(result);
    	}
    
    	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Driver successfully bound to device\n"));
    
    	if (driver->ops.scan) {
    		driver->ops.scan(device);
    	}
    
    	return_VALUE(0);
    }
    
    static int acpi_driver_attach(struct acpi_driver * drv)
    {
    	struct list_head * node, * next;
    	int count = 0;
    
    	ACPI_FUNCTION_TRACE("acpi_driver_attach");
    
    	spin_lock(&acpi_device_lock);
    	list_for_each_safe(node, next, &acpi_device_list) {
    		struct acpi_device * dev = container_of(node, struct acpi_device, g_list);
    
    		if (dev->driver || !dev->status.present)
    			continue;
    		spin_unlock(&acpi_device_lock);
    
    		if (!acpi_bus_match(dev, drv)) {
    			if (!acpi_bus_driver_init(dev, drv)) {
    				atomic_inc(&drv->references);
    				count++;
    				ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found driver [%s] for device [%s]\n",
    						  drv->name, dev->pnp.bus_id));
    			}
    		}
    		spin_lock(&acpi_device_lock);
    	}
    	spin_unlock(&acpi_device_lock);
    	return_VALUE(count);
    }
    
    static int acpi_driver_detach(struct acpi_driver * drv)
    {
    	struct list_head * node, * next;
    
    	ACPI_FUNCTION_TRACE("acpi_driver_detach");
    
    	spin_lock(&acpi_device_lock);
    	list_for_each_safe(node,next,&acpi_device_list) {
    		struct acpi_device * dev = container_of(node,struct acpi_device,g_list);
    
    		if (dev->driver == drv) {
    			spin_unlock(&acpi_device_lock);
    			if (drv->ops.remove)
    				drv->ops.remove(dev,ACPI_BUS_REMOVAL_NORMAL);
    			spin_lock(&acpi_device_lock);
    			dev->driver = NULL;
    			dev->driver_data = NULL;
    			atomic_dec(&drv->references);
    		}
    	}
    	spin_unlock(&acpi_device_lock);
    	return_VALUE(0);
    }
    
    /**
     * acpi_bus_register_driver 
     * ------------------------ 
     * Registers a driver with the ACPI bus.  Searches the namespace for all
     * devices that match the driver's criteria and binds.  Returns the
     * number of devices that were claimed by the driver, or a negative
     * error status for failure.
     */
    int
    acpi_bus_register_driver (
    	struct acpi_driver	*driver)
    {
    	int count;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_register_driver");
    
    	if (acpi_disabled)
    		return_VALUE(-ENODEV);
    
    	if (!driver)
    		return_VALUE(-EINVAL);
    
    	spin_lock(&acpi_device_lock);
    	list_add_tail(&driver->node, &acpi_bus_drivers);
    	spin_unlock(&acpi_device_lock);
    	count = acpi_driver_attach(driver);
    
    	return_VALUE(count);
    }
    EXPORT_SYMBOL(acpi_bus_register_driver);
    
    
    /**
     * acpi_bus_unregister_driver 
     * --------------------------
     * Unregisters a driver with the ACPI bus.  Searches the namespace for all
     * devices that match the driver's criteria and unbinds.
     */
    int
    acpi_bus_unregister_driver (
    	struct acpi_driver	*driver)
    {
    	int error = 0;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_unregister_driver");
    
    	if (driver) {
    		acpi_driver_detach(driver);
    
    		if (!atomic_read(&driver->references)) {
    			spin_lock(&acpi_device_lock);
    			list_del_init(&driver->node);
    			spin_unlock(&acpi_device_lock);
    		} 
    	} else 
    		error = -EINVAL;
    	return_VALUE(error);
    }
    EXPORT_SYMBOL(acpi_bus_unregister_driver);
    
    /**
     * acpi_bus_find_driver 
     * --------------------
     * Parses the list of registered drivers looking for a driver applicable for
     * the specified device.
     */
    static int
    acpi_bus_find_driver (
    	struct acpi_device	*device)
    {
    	int			result = 0;
    	struct list_head	* node, *next;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_find_driver");
    
    	spin_lock(&acpi_device_lock);
    	list_for_each_safe(node,next,&acpi_bus_drivers) {
    		struct acpi_driver * driver = container_of(node,struct acpi_driver,node);
    
    		atomic_inc(&driver->references);
    		spin_unlock(&acpi_device_lock);
    		if (!acpi_bus_match(device, driver)) {
    			result = acpi_bus_driver_init(device, driver);
    			if (!result)
    				goto Done;
    		}
    		atomic_dec(&driver->references);
    		spin_lock(&acpi_device_lock);
    	}
    	spin_unlock(&acpi_device_lock);
    
     Done:
    	return_VALUE(result);
    }
    
    
    /* --------------------------------------------------------------------------
                                     Device Enumeration
       -------------------------------------------------------------------------- */
    
    static int 
    acpi_bus_get_flags (
    	struct acpi_device	*device)
    {
    	acpi_status		status = AE_OK;
    	acpi_handle		temp = NULL;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_get_flags");
    
    	/* Presence of _STA indicates 'dynamic_status' */
    	status = acpi_get_handle(device->handle, "_STA", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.dynamic_status = 1;
    
    	/* Presence of _CID indicates 'compatible_ids' */
    	status = acpi_get_handle(device->handle, "_CID", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.compatible_ids = 1;
    
    	/* Presence of _RMV indicates 'removable' */
    	status = acpi_get_handle(device->handle, "_RMV", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.removable = 1;
    
    	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
    	status = acpi_get_handle(device->handle, "_EJD", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.ejectable = 1;
    	else {
    		status = acpi_get_handle(device->handle, "_EJ0", &temp);
    		if (ACPI_SUCCESS(status))
    			device->flags.ejectable = 1;
    	}
    
    	/* Presence of _LCK indicates 'lockable' */
    	status = acpi_get_handle(device->handle, "_LCK", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.lockable = 1;
    
    	/* Presence of _PS0|_PR0 indicates 'power manageable' */
    	status = acpi_get_handle(device->handle, "_PS0", &temp);
    	if (ACPI_FAILURE(status))
    		status = acpi_get_handle(device->handle, "_PR0", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.power_manageable = 1;
    
    	/* Presence of _PRW indicates wake capable */
    	status = acpi_get_handle(device->handle, "_PRW", &temp);
    	if (ACPI_SUCCESS(status))
    		device->flags.wake_capable = 1;
    
    	/* TBD: Peformance management */
    
    	return_VALUE(0);
    }
    
    static void acpi_device_get_busid(struct acpi_device * device, acpi_handle handle, int type)
    {
    	char			bus_id[5] = {'?',0};
    	struct acpi_buffer	buffer = {sizeof(bus_id), bus_id};
    	int			i = 0;
    
    	/*
    	 * Bus ID
    	 * ------
    	 * The device's Bus ID is simply the object name.
    	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
    	 */
    	switch (type) {
    	case ACPI_BUS_TYPE_SYSTEM:
    		strcpy(device->pnp.bus_id, "ACPI");
    		break;
    	case ACPI_BUS_TYPE_POWER_BUTTON:
    		strcpy(device->pnp.bus_id, "PWRF");
    		break;
    	case ACPI_BUS_TYPE_SLEEP_BUTTON:
    		strcpy(device->pnp.bus_id, "SLPF");
    		break;
    	default:
    		acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
    		/* Clean up trailing underscores (if any) */
    		for (i = 3; i > 1; i--) {
    			if (bus_id[i] == '_')
    				bus_id[i] = '\0';
    			else
    				break;
    		}
    		strcpy(device->pnp.bus_id, bus_id);
    		break;
    	}
    }
    
    static void acpi_device_set_id(struct acpi_device * device, struct acpi_device * parent,
    			       acpi_handle handle, int type)
    {
    	struct acpi_device_info	*info;
    	struct acpi_buffer	buffer = {ACPI_ALLOCATE_BUFFER, NULL};
    	char			*hid = NULL;
    	char			*uid = NULL;
    	struct acpi_compatible_id_list *cid_list = NULL;
    	acpi_status		status;
    
    	switch (type) {
    	case ACPI_BUS_TYPE_DEVICE:
    		status = acpi_get_object_info(handle, &buffer);
    		if (ACPI_FAILURE(status)) {
    			printk("%s: Error reading device info\n",__FUNCTION__);
    			return;
    		}
    
    		info = buffer.pointer;
    		if (info->valid & ACPI_VALID_HID)
    			hid = info->hardware_id.value;
    		if (info->valid & ACPI_VALID_UID)
    			uid = info->unique_id.value;
    		if (info->valid & ACPI_VALID_CID)
    			cid_list = &info->compatibility_id;
    		if (info->valid & ACPI_VALID_ADR) {
    			device->pnp.bus_address = info->address;
    			device->flags.bus_address = 1;
    		}
    		break;
    	case ACPI_BUS_TYPE_POWER:
    		hid = ACPI_POWER_HID;
    		break;
    	case ACPI_BUS_TYPE_PROCESSOR:
    		hid = ACPI_PROCESSOR_HID;
    		break;
    	case ACPI_BUS_TYPE_SYSTEM:
    		hid = ACPI_SYSTEM_HID;
    		break;
    	case ACPI_BUS_TYPE_THERMAL:
    		hid = ACPI_THERMAL_HID;
    		break;
    	case ACPI_BUS_TYPE_POWER_BUTTON:
    		hid = ACPI_BUTTON_HID_POWERF;
    		break;
    	case ACPI_BUS_TYPE_SLEEP_BUTTON:
    		hid = ACPI_BUTTON_HID_SLEEPF;
    		break;
    	}
    
    	/* 
    	 * \_SB
    	 * ----
    	 * Fix for the system root bus device -- the only root-level device.
    	 */
    	if ((parent == ACPI_ROOT_OBJECT) && (type == ACPI_BUS_TYPE_DEVICE)) {
    		hid = ACPI_BUS_HID;
    		strcpy(device->pnp.device_name, ACPI_BUS_DEVICE_NAME);
    		strcpy(device->pnp.device_class, ACPI_BUS_CLASS);
    	}
    
    	if (hid) {
    		strcpy(device->pnp.hardware_id, hid);
    		device->flags.hardware_id = 1;
    	}
    	if (uid) {
    		strcpy(device->pnp.unique_id, uid);
    		device->flags.unique_id = 1;
    	}
    	if (cid_list) {
    		device->pnp.cid_list = kmalloc(cid_list->size, GFP_KERNEL);
    		if (device->pnp.cid_list)
    			memcpy(device->pnp.cid_list, cid_list, cid_list->size);
    		else
    			printk(KERN_ERR "Memory allocation error\n");
    	}
    
    	acpi_os_free(buffer.pointer);
    }
    
    static int acpi_device_set_context(struct acpi_device * device, int type)
    {
    	acpi_status status = AE_OK;
    	int result = 0;
    	/*
    	 * Context
    	 * -------
    	 * Attach this 'struct acpi_device' to the ACPI object.  This makes
    	 * resolutions from handle->device very efficient.  Note that we need
    	 * to be careful with fixed-feature devices as they all attach to the
    	 * root object.
    	 */
    	if (type != ACPI_BUS_TYPE_POWER_BUTTON && 
    	    type != ACPI_BUS_TYPE_SLEEP_BUTTON) {
    		status = acpi_attach_data(device->handle,
    			acpi_bus_data_handler, device);
    
    		if (ACPI_FAILURE(status)) {
    			printk("Error attaching device data\n");
    			result = -ENODEV;
    		}
    	}
    	return result;
    }
    
    static void acpi_device_get_debug_info(struct acpi_device * device, acpi_handle handle, int type)
    {
    #ifdef CONFIG_ACPI_DEBUG_OUTPUT
    	char		*type_string = NULL;
    	char		name[80] = {'?','\0'};
    	struct acpi_buffer	buffer = {sizeof(name), name};
    
    	switch (type) {
    	case ACPI_BUS_TYPE_DEVICE:
    		type_string = "Device";
    		acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
    		break;
    	case ACPI_BUS_TYPE_POWER:
    		type_string = "Power Resource";
    		acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
    		break;
    	case ACPI_BUS_TYPE_PROCESSOR:
    		type_string = "Processor";
    		acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
    		break;
    	case ACPI_BUS_TYPE_SYSTEM:
    		type_string = "System";
    		acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
    		break;
    	case ACPI_BUS_TYPE_THERMAL:
    		type_string = "Thermal Zone";
    		acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
    		break;
    	case ACPI_BUS_TYPE_POWER_BUTTON:
    		type_string = "Power Button";
    		sprintf(name, "PWRB");
    		break;
    	case ACPI_BUS_TYPE_SLEEP_BUTTON:
    		type_string = "Sleep Button";
    		sprintf(name, "SLPB");
    		break;
    	}
    
    	printk(KERN_DEBUG "Found %s %s [%p]\n", type_string, name, handle);
    #endif /*CONFIG_ACPI_DEBUG_OUTPUT*/
    }
    
    
    static int
    acpi_bus_remove (
    	struct acpi_device *dev,
    	int rmdevice)
    {
    	int 			result = 0;
    	struct acpi_driver	*driver;
    	
    	ACPI_FUNCTION_TRACE("acpi_bus_remove");
    
    	if (!dev)
    		return_VALUE(-EINVAL);
    
    	driver = dev->driver;
    
    	if ((driver) && (driver->ops.remove)) {
    
    		if (driver->ops.stop) {
    			result = driver->ops.stop(dev, ACPI_BUS_REMOVAL_EJECT);
    			if (result)
    				return_VALUE(result);
    		}
    
    		result = dev->driver->ops.remove(dev, ACPI_BUS_REMOVAL_EJECT);
    		if (result) {
    			return_VALUE(result);
    		}
    
    		atomic_dec(&dev->driver->references);
    		dev->driver = NULL;
    		acpi_driver_data(dev) = NULL;
    	}
    
    	if (!rmdevice)
    		return_VALUE(0);
    
    	if (dev->flags.bus_address) {
    		if ((dev->parent) && (dev->parent->ops.unbind))
    			dev->parent->ops.unbind(dev);
    	}
    	
    	acpi_device_unregister(dev, ACPI_BUS_REMOVAL_EJECT);
    
    	return_VALUE(0);
    }
    
    
    int
    acpi_bus_add (
    	struct acpi_device	**child,
    	struct acpi_device	*parent,
    	acpi_handle		handle,
    	int			type)
    {
    	int			result = 0;
    	struct acpi_device	*device = NULL;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_add");
    
    	if (!child)
    		return_VALUE(-EINVAL);
    
    	device = kmalloc(sizeof(struct acpi_device), GFP_KERNEL);
    	if (!device) {
    		ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Memory allocation error\n"));
    		return_VALUE(-ENOMEM);
    	}
    	memset(device, 0, sizeof(struct acpi_device));
    
    	device->handle = handle;
    	device->parent = parent;
    
    	acpi_device_get_busid(device,handle,type);
    
    	/*
    	 * Flags
    	 * -----
    	 * Get prior to calling acpi_bus_get_status() so we know whether
    	 * or not _STA is present.  Note that we only look for object
    	 * handles -- cannot evaluate objects until we know the device is
    	 * present and properly initialized.
    	 */
    	result = acpi_bus_get_flags(device);
    	if (result)
    		goto end;
    
    	/*
    	 * Status
    	 * ------
    	 * See if the device is present.  We always assume that non-Device()
    	 * objects (e.g. thermal zones, power resources, processors, etc.) are
    	 * present, functioning, etc. (at least when parent object is present).
    	 * Note that _STA has a different meaning for some objects (e.g.
    	 * power resources) so we need to be careful how we use it.
    	 */
    	switch (type) {
    	case ACPI_BUS_TYPE_DEVICE:
    		result = acpi_bus_get_status(device);
    		if (ACPI_FAILURE(result) || !device->status.present) {
    			result = -ENOENT;
    			goto end;
    		}
    		break;
    	default:
    		STRUCT_TO_INT(device->status) = 0x0F;
    		break;
    	}
    
    	/*
    	 * Initialize Device
    	 * -----------------
    	 * TBD: Synch with Core's enumeration/initialization process.
    	 */
    
    	/*
    	 * Hardware ID, Unique ID, & Bus Address
    	 * -------------------------------------
    	 */
    	acpi_device_set_id(device,parent,handle,type);
    
    	/*
    	 * Power Management
    	 * ----------------
    	 */
    	if (device->flags.power_manageable) {
    		result = acpi_bus_get_power_flags(device);
    		if (result)
    			goto end;
    	}
    
     	/*
    	 * Wakeup device management
    	 *-----------------------
    	 */
    	if (device->flags.wake_capable) {
    		result = acpi_bus_get_wakeup_device_flags(device);
    		if (result)
    			goto end;
    	}
    
    	/*
    	 * Performance Management
    	 * ----------------------
    	 */
    	if (device->flags.performance_manageable) {
    		result = acpi_bus_get_perf_flags(device);
    		if (result)
    			goto end;
    	}
    
    	if ((result = acpi_device_set_context(device,type)))
    		goto end;
    
    	acpi_device_get_debug_info(device,handle,type);
    
    	acpi_device_register(device,parent);
    
    	/*
    	 * Bind _ADR-Based Devices
    	 * -----------------------
    	 * If there's a a bus address (_ADR) then we utilize the parent's 
    	 * 'bind' function (if exists) to bind the ACPI- and natively-
    	 * enumerated device representations.
    	 */
    	if (device->flags.bus_address) {
    		if (device->parent && device->parent->ops.bind)
    			device->parent->ops.bind(device);
    	}
    
    	/*
    	 * Locate & Attach Driver
    	 * ----------------------
    	 * If there's a hardware id (_HID) or compatible ids (_CID) we check
    	 * to see if there's a driver installed for this kind of device.  Note
    	 * that drivers can install before or after a device is enumerated.
    	 *
    	 * TBD: Assumes LDM provides driver hot-plug capability.
    	 */
    	acpi_bus_find_driver(device);
    
    end:
    	if (!result)
    		*child = device;
    	else {
    		if (device->pnp.cid_list)
    			kfree(device->pnp.cid_list);
    		kfree(device);
    	}
    
    	return_VALUE(result);
    }
    EXPORT_SYMBOL(acpi_bus_add);
    
    
    int acpi_bus_scan (struct acpi_device	*start)
    {
    	acpi_status		status = AE_OK;
    	struct acpi_device	*parent = NULL;
    	struct acpi_device	*child = NULL;
    	acpi_handle		phandle = NULL;
    	acpi_handle		chandle = NULL;
    	acpi_object_type	type = 0;
    	u32			level = 1;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_scan");
    
    	if (!start)
    		return_VALUE(-EINVAL);
    
    	parent = start;
    	phandle = start->handle;
    	
    	/*
    	 * Parse through the ACPI namespace, identify all 'devices', and
    	 * create a new 'struct acpi_device' for each.
    	 */
    	while ((level > 0) && parent) {
    
    		status = acpi_get_next_object(ACPI_TYPE_ANY, phandle,
    			chandle, &chandle);
    
    		/*
    		 * If this scope is exhausted then move our way back up.
    		 */
    		if (ACPI_FAILURE(status)) {
    			level--;
    			chandle = phandle;
    			acpi_get_parent(phandle, &phandle);
    			if (parent->parent)
    				parent = parent->parent;
    			continue;
    		}
    
    		status = acpi_get_type(chandle, &type);
    		if (ACPI_FAILURE(status))
    			continue;
    
    		/*
    		 * If this is a scope object then parse it (depth-first).
    		 */
    		if (type == ACPI_TYPE_LOCAL_SCOPE) {
    			level++;
    			phandle = chandle;
    			chandle = NULL;
    			continue;
    		}
    
    		/*
    		 * We're only interested in objects that we consider 'devices'.
    		 */
    		switch (type) {
    		case ACPI_TYPE_DEVICE:
    			type = ACPI_BUS_TYPE_DEVICE;
    			break;
    		case ACPI_TYPE_PROCESSOR:
    			type = ACPI_BUS_TYPE_PROCESSOR;
    			break;
    		case ACPI_TYPE_THERMAL:
    			type = ACPI_BUS_TYPE_THERMAL;
    			break;
    		case ACPI_TYPE_POWER:
    			type = ACPI_BUS_TYPE_POWER;
    			break;
    		default:
    			continue;
    		}
    
    		status = acpi_bus_add(&child, parent, chandle, type);
    		if (ACPI_FAILURE(status))
    			continue;
    
    		/*
    		 * If the device is present, enabled, and functioning then
    		 * parse its scope (depth-first).  Note that we need to
    		 * represent absent devices to facilitate PnP notifications
    		 * -- but only the subtree head (not all of its children,
    		 * which will be enumerated when the parent is inserted).
    		 *
    		 * TBD: Need notifications and other detection mechanisms
    		 *	in place before we can fully implement this.
    		 */
    		if (child->status.present) {
    			status = acpi_get_next_object(ACPI_TYPE_ANY, chandle,
    						      NULL, NULL);
    			if (ACPI_SUCCESS(status)) {
    				level++;
    				phandle = chandle;
    				chandle = NULL;
    				parent = child;
    			}
    		}
    	}
    
    	return_VALUE(0);
    }
    EXPORT_SYMBOL(acpi_bus_scan);
    
    
    static int
    acpi_bus_trim(struct acpi_device	*start,
    		int rmdevice)
    {
    	acpi_status		status;
    	struct acpi_device	*parent, *child;
    	acpi_handle		phandle, chandle;
    	acpi_object_type	type;
    	u32			level = 1;
    	int			err = 0;
    
    	parent  = start;
    	phandle = start->handle;
    	child = chandle = NULL;
    
    	while ((level > 0) && parent && (!err)) {
    		status = acpi_get_next_object(ACPI_TYPE_ANY, phandle,
    			chandle, &chandle);
    
    		/*
    		 * If this scope is exhausted then move our way back up.
    		 */
    		if (ACPI_FAILURE(status)) {
    			level--;
    			chandle = phandle;
    			acpi_get_parent(phandle, &phandle);
    			child = parent;
    			parent = parent->parent;
    
    			if (level == 0)
    				err = acpi_bus_remove(child, rmdevice);
    			else
    				err = acpi_bus_remove(child, 1);
    
    			continue;
    		}
    
    		status = acpi_get_type(chandle, &type);
    		if (ACPI_FAILURE(status)) {
    			continue;
    		}
    		/*
    		 * If there is a device corresponding to chandle then
    		 * parse it (depth-first).
    		 */
    		if (acpi_bus_get_device(chandle, &child) == 0) {
    			level++;
    			phandle = chandle;
    			chandle = NULL;
    			parent = child;
    		}
    		continue;
    	}
    	return err;
    }
    
    static int
    acpi_bus_scan_fixed (
    	struct acpi_device	*root)
    {
    	int			result = 0;
    	struct acpi_device	*device = NULL;
    
    	ACPI_FUNCTION_TRACE("acpi_bus_scan_fixed");
    
    	if (!root)
    		return_VALUE(-ENODEV);
    
    	/*
    	 * Enumerate all fixed-feature devices.
    	 */
    	if (acpi_fadt.pwr_button == 0)
    		result = acpi_bus_add(&device, acpi_root, 
    			NULL, ACPI_BUS_TYPE_POWER_BUTTON);
    
    	if (acpi_fadt.sleep_button == 0)
    		result = acpi_bus_add(&device, acpi_root, 
    			NULL, ACPI_BUS_TYPE_SLEEP_BUTTON);
    
    	return_VALUE(result);
    }
    
    
    static int __init acpi_scan_init(void)
    {
    	int result;
    
    	ACPI_FUNCTION_TRACE("acpi_scan_init");
    
    	if (acpi_disabled)
    		return_VALUE(0);
    
    	kset_register(&acpi_namespace_kset);
    
    	/*
    	 * Create the root device in the bus's device tree
    	 */
    	result = acpi_bus_add(&acpi_root, NULL, ACPI_ROOT_OBJECT, 
    		ACPI_BUS_TYPE_SYSTEM);
    	if (result)
    		goto Done;
    
    	/*
    	 * Enumerate devices in the ACPI namespace.
    	 */
    	result = acpi_bus_scan_fixed(acpi_root);
    	if (!result) 
    		result = acpi_bus_scan(acpi_root);
    
    	if (result)
    		acpi_device_unregister(acpi_root, ACPI_BUS_REMOVAL_NORMAL);
    
     Done:
    	return_VALUE(result);
    }
    
    subsys_initcall(acpi_scan_init);