Skip to content
Snippets Groups Projects
Select Git revision
  • 6c20f6df61ee7b8b562143504cf3e89ae802de87
  • seco_lf-6.6.52-2.2.1 default protected
  • MODV-209-e-39-add-gpio-line-names-in-kernel-device-tree
  • niccolor/e88-lt9611uxc-dsi-complete-support
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-nxpbtuart
  • chka-modv-206-poc
  • seco_lf-6.6.52-2.2.1-rtl8211f_led
  • seco_lf-5.10.y protected
  • seco_lf_v2024.04_6.6.52_2.2.x_e39_spidev-overlay
  • seco_lf_v2024.04_6.6.52_2.2.x_e39_sdcard-card-detect-gpio-mode
  • integrate/gitlab-ci/cleaos-833-add-cnfluence-labels-into-config/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-448-bitbake-logs-in-failed-job/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-448-bitbake-logs-in-failed-job/into/seco_lf-5.10.y
  • chka-seco_lf-6.6.52-2.2.1-fix-eth-led-modv-198
  • didi/spi-cs
  • seco_lf-6.6.23-2.0.0_e39-e83-temperature-sensor
  • seco_lf-6.6.23-2.0.0_e39-e83-status-led
  • seco_lf-6.6.23-2.0.0_e39-e83-lvds-7inch-powersequence
  • chka-fix-eth-led-modv-198
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

setup.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    clocksource.c 27.58 KiB
    /*
     * linux/kernel/time/clocksource.c
     *
     * This file contains the functions which manage clocksource drivers.
     *
     * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     *
     * TODO WishList:
     *   o Allow clocksource drivers to be unregistered
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/device.h>
    #include <linux/clocksource.h>
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
    #include <linux/tick.h>
    #include <linux/kthread.h>
    
    #include "tick-internal.h"
    #include "timekeeping_internal.h"
    
    /**
     * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
     * @mult:	pointer to mult variable
     * @shift:	pointer to shift variable
     * @from:	frequency to convert from
     * @to:		frequency to convert to
     * @maxsec:	guaranteed runtime conversion range in seconds
     *
     * The function evaluates the shift/mult pair for the scaled math
     * operations of clocksources and clockevents.
     *
     * @to and @from are frequency values in HZ. For clock sources @to is
     * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
     * event @to is the counter frequency and @from is NSEC_PER_SEC.
     *
     * The @maxsec conversion range argument controls the time frame in
     * seconds which must be covered by the runtime conversion with the
     * calculated mult and shift factors. This guarantees that no 64bit
     * overflow happens when the input value of the conversion is
     * multiplied with the calculated mult factor. Larger ranges may
     * reduce the conversion accuracy by chosing smaller mult and shift
     * factors.
     */
    void
    clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
    {
    	u64 tmp;
    	u32 sft, sftacc= 32;
    
    	/*
    	 * Calculate the shift factor which is limiting the conversion
    	 * range:
    	 */
    	tmp = ((u64)maxsec * from) >> 32;
    	while (tmp) {
    		tmp >>=1;
    		sftacc--;
    	}
    
    	/*
    	 * Find the conversion shift/mult pair which has the best
    	 * accuracy and fits the maxsec conversion range:
    	 */
    	for (sft = 32; sft > 0; sft--) {
    		tmp = (u64) to << sft;
    		tmp += from / 2;
    		do_div(tmp, from);
    		if ((tmp >> sftacc) == 0)
    			break;
    	}
    	*mult = tmp;
    	*shift = sft;
    }
    
    /*[Clocksource internal variables]---------
     * curr_clocksource:
     *	currently selected clocksource.
     * clocksource_list:
     *	linked list with the registered clocksources
     * clocksource_mutex:
     *	protects manipulations to curr_clocksource and the clocksource_list
     * override_name:
     *	Name of the user-specified clocksource.
     */
    static struct clocksource *curr_clocksource;
    static LIST_HEAD(clocksource_list);
    static DEFINE_MUTEX(clocksource_mutex);
    static char override_name[CS_NAME_LEN];
    static int finished_booting;
    
    #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
    static void clocksource_watchdog_work(struct work_struct *work);
    static void clocksource_select(void);
    
    static LIST_HEAD(watchdog_list);
    static struct clocksource *watchdog;
    static struct timer_list watchdog_timer;
    static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
    static DEFINE_SPINLOCK(watchdog_lock);
    static int watchdog_running;
    static atomic_t watchdog_reset_pending;
    
    static int clocksource_watchdog_kthread(void *data);
    static void __clocksource_change_rating(struct clocksource *cs, int rating);
    
    /*
     * Interval: 0.5sec Threshold: 0.0625s
     */
    #define WATCHDOG_INTERVAL (HZ >> 1)
    #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
    
    static void clocksource_watchdog_work(struct work_struct *work)
    {
    	/*
    	 * If kthread_run fails the next watchdog scan over the
    	 * watchdog_list will find the unstable clock again.
    	 */
    	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
    }
    
    static void __clocksource_unstable(struct clocksource *cs)
    {
    	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
    	cs->flags |= CLOCK_SOURCE_UNSTABLE;
    	if (finished_booting)
    		schedule_work(&watchdog_work);
    }
    
    /**
     * clocksource_mark_unstable - mark clocksource unstable via watchdog
     * @cs:		clocksource to be marked unstable
     *
     * This function is called instead of clocksource_change_rating from
     * cpu hotplug code to avoid a deadlock between the clocksource mutex
     * and the cpu hotplug mutex. It defers the update of the clocksource
     * to the watchdog thread.
     */
    void clocksource_mark_unstable(struct clocksource *cs)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&watchdog_lock, flags);
    	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
    		if (list_empty(&cs->wd_list))
    			list_add(&cs->wd_list, &watchdog_list);
    		__clocksource_unstable(cs);
    	}
    	spin_unlock_irqrestore(&watchdog_lock, flags);
    }
    
    static void clocksource_watchdog(unsigned long data)
    {
    	struct clocksource *cs;
    	cycle_t csnow, wdnow, cslast, wdlast, delta;
    	int64_t wd_nsec, cs_nsec;
    	int next_cpu, reset_pending;
    
    	spin_lock(&watchdog_lock);
    	if (!watchdog_running)
    		goto out;
    
    	reset_pending = atomic_read(&watchdog_reset_pending);
    
    	list_for_each_entry(cs, &watchdog_list, wd_list) {
    
    		/* Clocksource already marked unstable? */
    		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
    			if (finished_booting)
    				schedule_work(&watchdog_work);
    			continue;
    		}
    
    		local_irq_disable();
    		csnow = cs->read(cs);
    		wdnow = watchdog->read(watchdog);
    		local_irq_enable();
    
    		/* Clocksource initialized ? */
    		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
    		    atomic_read(&watchdog_reset_pending)) {
    			cs->flags |= CLOCK_SOURCE_WATCHDOG;
    			cs->wd_last = wdnow;
    			cs->cs_last = csnow;
    			continue;
    		}
    
    		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
    		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
    					     watchdog->shift);
    
    		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
    		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
    		wdlast = cs->wd_last; /* save these in case we print them */
    		cslast = cs->cs_last;
    		cs->cs_last = csnow;
    		cs->wd_last = wdnow;
    
    		if (atomic_read(&watchdog_reset_pending))
    			continue;
    
    		/* Check the deviation from the watchdog clocksource. */
    		if (abs64(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
    			pr_warn("timekeeping watchdog: Marking clocksource '%s' as unstable because the skew is too large:\n",
    				cs->name);
    			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
    				watchdog->name, wdnow, wdlast, watchdog->mask);
    			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
    				cs->name, csnow, cslast, cs->mask);
    			__clocksource_unstable(cs);
    			continue;
    		}
    
    		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
    		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
    		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
    			/* Mark it valid for high-res. */
    			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
    
    			/*
    			 * clocksource_done_booting() will sort it if
    			 * finished_booting is not set yet.
    			 */
    			if (!finished_booting)
    				continue;
    
    			/*
    			 * If this is not the current clocksource let
    			 * the watchdog thread reselect it. Due to the
    			 * change to high res this clocksource might
    			 * be preferred now. If it is the current
    			 * clocksource let the tick code know about
    			 * that change.
    			 */
    			if (cs != curr_clocksource) {
    				cs->flags |= CLOCK_SOURCE_RESELECT;
    				schedule_work(&watchdog_work);
    			} else {
    				tick_clock_notify();
    			}
    		}
    	}
    
    	/*
    	 * We only clear the watchdog_reset_pending, when we did a
    	 * full cycle through all clocksources.
    	 */
    	if (reset_pending)
    		atomic_dec(&watchdog_reset_pending);
    
    	/*
    	 * Cycle through CPUs to check if the CPUs stay synchronized
    	 * to each other.
    	 */
    	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
    	if (next_cpu >= nr_cpu_ids)
    		next_cpu = cpumask_first(cpu_online_mask);
    	watchdog_timer.expires += WATCHDOG_INTERVAL;
    	add_timer_on(&watchdog_timer, next_cpu);
    out:
    	spin_unlock(&watchdog_lock);
    }
    
    static inline void clocksource_start_watchdog(void)
    {
    	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
    		return;
    	init_timer(&watchdog_timer);
    	watchdog_timer.function = clocksource_watchdog;
    	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
    	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
    	watchdog_running = 1;
    }
    
    static inline void clocksource_stop_watchdog(void)
    {
    	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
    		return;
    	del_timer(&watchdog_timer);
    	watchdog_running = 0;
    }
    
    static inline void clocksource_reset_watchdog(void)
    {
    	struct clocksource *cs;
    
    	list_for_each_entry(cs, &watchdog_list, wd_list)
    		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
    }
    
    static void clocksource_resume_watchdog(void)
    {
    	atomic_inc(&watchdog_reset_pending);
    }
    
    static void clocksource_enqueue_watchdog(struct clocksource *cs)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&watchdog_lock, flags);
    	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
    		/* cs is a clocksource to be watched. */
    		list_add(&cs->wd_list, &watchdog_list);
    		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
    	} else {
    		/* cs is a watchdog. */
    		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
    			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
    		/* Pick the best watchdog. */
    		if (!watchdog || cs->rating > watchdog->rating) {
    			watchdog = cs;
    			/* Reset watchdog cycles */
    			clocksource_reset_watchdog();
    		}
    	}
    	/* Check if the watchdog timer needs to be started. */
    	clocksource_start_watchdog();
    	spin_unlock_irqrestore(&watchdog_lock, flags);
    }
    
    static void clocksource_dequeue_watchdog(struct clocksource *cs)
    {
    	unsigned long flags;
    
    	spin_lock_irqsave(&watchdog_lock, flags);
    	if (cs != watchdog) {
    		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
    			/* cs is a watched clocksource. */
    			list_del_init(&cs->wd_list);
    			/* Check if the watchdog timer needs to be stopped. */
    			clocksource_stop_watchdog();
    		}
    	}
    	spin_unlock_irqrestore(&watchdog_lock, flags);
    }
    
    static int __clocksource_watchdog_kthread(void)
    {
    	struct clocksource *cs, *tmp;
    	unsigned long flags;
    	LIST_HEAD(unstable);
    	int select = 0;
    
    	spin_lock_irqsave(&watchdog_lock, flags);
    	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
    		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
    			list_del_init(&cs->wd_list);
    			list_add(&cs->wd_list, &unstable);
    			select = 1;
    		}
    		if (cs->flags & CLOCK_SOURCE_RESELECT) {
    			cs->flags &= ~CLOCK_SOURCE_RESELECT;
    			select = 1;
    		}
    	}
    	/* Check if the watchdog timer needs to be stopped. */
    	clocksource_stop_watchdog();
    	spin_unlock_irqrestore(&watchdog_lock, flags);
    
    	/* Needs to be done outside of watchdog lock */
    	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
    		list_del_init(&cs->wd_list);
    		__clocksource_change_rating(cs, 0);
    	}
    	return select;
    }
    
    static int clocksource_watchdog_kthread(void *data)
    {
    	mutex_lock(&clocksource_mutex);
    	if (__clocksource_watchdog_kthread())
    		clocksource_select();
    	mutex_unlock(&clocksource_mutex);
    	return 0;
    }
    
    static bool clocksource_is_watchdog(struct clocksource *cs)
    {
    	return cs == watchdog;
    }
    
    #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
    
    static void clocksource_enqueue_watchdog(struct clocksource *cs)
    {
    	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
    		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
    }
    
    static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
    static inline void clocksource_resume_watchdog(void) { }
    static inline int __clocksource_watchdog_kthread(void) { return 0; }
    static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
    void clocksource_mark_unstable(struct clocksource *cs) { }
    
    #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
    
    /**
     * clocksource_suspend - suspend the clocksource(s)
     */
    void clocksource_suspend(void)
    {
    	struct clocksource *cs;
    
    	list_for_each_entry_reverse(cs, &clocksource_list, list)
    		if (cs->suspend)
    			cs->suspend(cs);
    }
    
    /**
     * clocksource_resume - resume the clocksource(s)
     */
    void clocksource_resume(void)
    {
    	struct clocksource *cs;
    
    	list_for_each_entry(cs, &clocksource_list, list)
    		if (cs->resume)
    			cs->resume(cs);
    
    	clocksource_resume_watchdog();
    }
    
    /**
     * clocksource_touch_watchdog - Update watchdog
     *
     * Update the watchdog after exception contexts such as kgdb so as not
     * to incorrectly trip the watchdog. This might fail when the kernel
     * was stopped in code which holds watchdog_lock.
     */
    void clocksource_touch_watchdog(void)
    {
    	clocksource_resume_watchdog();
    }
    
    /**
     * clocksource_max_adjustment- Returns max adjustment amount
     * @cs:         Pointer to clocksource
     *
     */
    static u32 clocksource_max_adjustment(struct clocksource *cs)
    {
    	u64 ret;
    	/*
    	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
    	 */
    	ret = (u64)cs->mult * 11;
    	do_div(ret,100);
    	return (u32)ret;
    }
    
    /**
     * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
     * @mult:	cycle to nanosecond multiplier
     * @shift:	cycle to nanosecond divisor (power of two)
     * @maxadj:	maximum adjustment value to mult (~11%)
     * @mask:	bitmask for two's complement subtraction of non 64 bit counters
     * @max_cyc:	maximum cycle value before potential overflow (does not include
     *		any safety margin)
     *
     * NOTE: This function includes a safety margin of 50%, in other words, we
     * return half the number of nanoseconds the hardware counter can technically
     * cover. This is done so that we can potentially detect problems caused by
     * delayed timers or bad hardware, which might result in time intervals that
     * are larger then what the math used can handle without overflows.
     */
    u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
    {
    	u64 max_nsecs, max_cycles;
    
    	/*
    	 * Calculate the maximum number of cycles that we can pass to the
    	 * cyc2ns() function without overflowing a 64-bit result.
    	 */
    	max_cycles = ULLONG_MAX;
    	do_div(max_cycles, mult+maxadj);
    
    	/*
    	 * The actual maximum number of cycles we can defer the clocksource is
    	 * determined by the minimum of max_cycles and mask.
    	 * Note: Here we subtract the maxadj to make sure we don't sleep for
    	 * too long if there's a large negative adjustment.
    	 */
    	max_cycles = min(max_cycles, mask);
    	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
    
    	/* return the max_cycles value as well if requested */
    	if (max_cyc)
    		*max_cyc = max_cycles;
    
    	/* Return 50% of the actual maximum, so we can detect bad values */
    	max_nsecs >>= 1;
    
    	return max_nsecs;
    }
    
    /**
     * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
     * @cs:         Pointer to clocksource to be updated
     *
     */
    static inline void clocksource_update_max_deferment(struct clocksource *cs)
    {
    	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
    						cs->maxadj, cs->mask,
    						&cs->max_cycles);
    }
    
    #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
    
    static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
    {
    	struct clocksource *cs;
    
    	if (!finished_booting || list_empty(&clocksource_list))
    		return NULL;
    
    	/*
    	 * We pick the clocksource with the highest rating. If oneshot
    	 * mode is active, we pick the highres valid clocksource with
    	 * the best rating.
    	 */
    	list_for_each_entry(cs, &clocksource_list, list) {
    		if (skipcur && cs == curr_clocksource)
    			continue;
    		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
    			continue;
    		return cs;
    	}
    	return NULL;
    }
    
    static void __clocksource_select(bool skipcur)
    {
    	bool oneshot = tick_oneshot_mode_active();
    	struct clocksource *best, *cs;
    
    	/* Find the best suitable clocksource */
    	best = clocksource_find_best(oneshot, skipcur);
    	if (!best)
    		return;
    
    	/* Check for the override clocksource. */
    	list_for_each_entry(cs, &clocksource_list, list) {
    		if (skipcur && cs == curr_clocksource)
    			continue;
    		if (strcmp(cs->name, override_name) != 0)
    			continue;
    		/*
    		 * Check to make sure we don't switch to a non-highres
    		 * capable clocksource if the tick code is in oneshot
    		 * mode (highres or nohz)
    		 */
    		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
    			/* Override clocksource cannot be used. */
    			pr_warn("Override clocksource %s is not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
    				cs->name);
    			override_name[0] = 0;
    		} else
    			/* Override clocksource can be used. */
    			best = cs;
    		break;
    	}
    
    	if (curr_clocksource != best && !timekeeping_notify(best)) {
    		pr_info("Switched to clocksource %s\n", best->name);
    		curr_clocksource = best;
    	}
    }
    
    /**
     * clocksource_select - Select the best clocksource available
     *
     * Private function. Must hold clocksource_mutex when called.
     *
     * Select the clocksource with the best rating, or the clocksource,
     * which is selected by userspace override.
     */
    static void clocksource_select(void)
    {
    	return __clocksource_select(false);
    }
    
    static void clocksource_select_fallback(void)
    {
    	return __clocksource_select(true);
    }
    
    #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
    
    static inline void clocksource_select(void) { }
    static inline void clocksource_select_fallback(void) { }
    
    #endif
    
    /*
     * clocksource_done_booting - Called near the end of core bootup
     *
     * Hack to avoid lots of clocksource churn at boot time.
     * We use fs_initcall because we want this to start before
     * device_initcall but after subsys_initcall.
     */
    static int __init clocksource_done_booting(void)
    {
    	mutex_lock(&clocksource_mutex);
    	curr_clocksource = clocksource_default_clock();
    	finished_booting = 1;
    	/*
    	 * Run the watchdog first to eliminate unstable clock sources
    	 */
    	__clocksource_watchdog_kthread();
    	clocksource_select();
    	mutex_unlock(&clocksource_mutex);
    	return 0;
    }
    fs_initcall(clocksource_done_booting);
    
    /*
     * Enqueue the clocksource sorted by rating
     */
    static void clocksource_enqueue(struct clocksource *cs)
    {
    	struct list_head *entry = &clocksource_list;
    	struct clocksource *tmp;
    
    	list_for_each_entry(tmp, &clocksource_list, list)
    		/* Keep track of the place, where to insert */
    		if (tmp->rating >= cs->rating)
    			entry = &tmp->list;
    	list_add(&cs->list, entry);
    }
    
    /**
     * __clocksource_update_freq_scale - Used update clocksource with new freq
     * @cs:		clocksource to be registered
     * @scale:	Scale factor multiplied against freq to get clocksource hz
     * @freq:	clocksource frequency (cycles per second) divided by scale
     *
     * This should only be called from the clocksource->enable() method.
     *
     * This *SHOULD NOT* be called directly! Please use the
     * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
     * functions.
     */
    void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
    {
    	u64 sec;
    
    	/*
    	 * Default clocksources are *special* and self-define their mult/shift.
    	 * But, you're not special, so you should specify a freq value.
    	 */
    	if (freq) {
    		/*
    		 * Calc the maximum number of seconds which we can run before
    		 * wrapping around. For clocksources which have a mask > 32-bit
    		 * we need to limit the max sleep time to have a good
    		 * conversion precision. 10 minutes is still a reasonable
    		 * amount. That results in a shift value of 24 for a
    		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
    		 * ~ 0.06ppm granularity for NTP.
    		 */
    		sec = cs->mask;
    		do_div(sec, freq);
    		do_div(sec, scale);
    		if (!sec)
    			sec = 1;
    		else if (sec > 600 && cs->mask > UINT_MAX)
    			sec = 600;
    
    		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
    				       NSEC_PER_SEC / scale, sec * scale);
    	}
    	/*
    	 * Ensure clocksources that have large 'mult' values don't overflow
    	 * when adjusted.
    	 */
    	cs->maxadj = clocksource_max_adjustment(cs);
    	while (freq && ((cs->mult + cs->maxadj < cs->mult)
    		|| (cs->mult - cs->maxadj > cs->mult))) {
    		cs->mult >>= 1;
    		cs->shift--;
    		cs->maxadj = clocksource_max_adjustment(cs);
    	}
    
    	/*
    	 * Only warn for *special* clocksources that self-define
    	 * their mult/shift values and don't specify a freq.
    	 */
    	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
    		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
    		cs->name);
    
    	clocksource_update_max_deferment(cs);
    
    	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
    		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
    }
    EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
    
    /**
     * __clocksource_register_scale - Used to install new clocksources
     * @cs:		clocksource to be registered
     * @scale:	Scale factor multiplied against freq to get clocksource hz
     * @freq:	clocksource frequency (cycles per second) divided by scale
     *
     * Returns -EBUSY if registration fails, zero otherwise.
     *
     * This *SHOULD NOT* be called directly! Please use the
     * clocksource_register_hz() or clocksource_register_khz helper functions.
     */
    int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
    {
    
    	/* Initialize mult/shift and max_idle_ns */
    	__clocksource_update_freq_scale(cs, scale, freq);
    
    	/* Add clocksource to the clocksource list */
    	mutex_lock(&clocksource_mutex);
    	clocksource_enqueue(cs);
    	clocksource_enqueue_watchdog(cs);
    	clocksource_select();
    	mutex_unlock(&clocksource_mutex);
    	return 0;
    }
    EXPORT_SYMBOL_GPL(__clocksource_register_scale);
    
    static void __clocksource_change_rating(struct clocksource *cs, int rating)
    {
    	list_del(&cs->list);
    	cs->rating = rating;
    	clocksource_enqueue(cs);
    }
    
    /**
     * clocksource_change_rating - Change the rating of a registered clocksource
     * @cs:		clocksource to be changed
     * @rating:	new rating
     */
    void clocksource_change_rating(struct clocksource *cs, int rating)
    {
    	mutex_lock(&clocksource_mutex);
    	__clocksource_change_rating(cs, rating);
    	clocksource_select();
    	mutex_unlock(&clocksource_mutex);
    }
    EXPORT_SYMBOL(clocksource_change_rating);
    
    /*
     * Unbind clocksource @cs. Called with clocksource_mutex held
     */
    static int clocksource_unbind(struct clocksource *cs)
    {
    	/*
    	 * I really can't convince myself to support this on hardware
    	 * designed by lobotomized monkeys.
    	 */
    	if (clocksource_is_watchdog(cs))
    		return -EBUSY;
    
    	if (cs == curr_clocksource) {
    		/* Select and try to install a replacement clock source */
    		clocksource_select_fallback();
    		if (curr_clocksource == cs)
    			return -EBUSY;
    	}
    	clocksource_dequeue_watchdog(cs);
    	list_del_init(&cs->list);
    	return 0;
    }
    
    /**
     * clocksource_unregister - remove a registered clocksource
     * @cs:	clocksource to be unregistered
     */
    int clocksource_unregister(struct clocksource *cs)
    {
    	int ret = 0;
    
    	mutex_lock(&clocksource_mutex);
    	if (!list_empty(&cs->list))
    		ret = clocksource_unbind(cs);
    	mutex_unlock(&clocksource_mutex);
    	return ret;
    }
    EXPORT_SYMBOL(clocksource_unregister);
    
    #ifdef CONFIG_SYSFS
    /**
     * sysfs_show_current_clocksources - sysfs interface for current clocksource
     * @dev:	unused
     * @attr:	unused
     * @buf:	char buffer to be filled with clocksource list
     *
     * Provides sysfs interface for listing current clocksource.
     */
    static ssize_t
    sysfs_show_current_clocksources(struct device *dev,
    				struct device_attribute *attr, char *buf)
    {
    	ssize_t count = 0;
    
    	mutex_lock(&clocksource_mutex);
    	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
    	mutex_unlock(&clocksource_mutex);
    
    	return count;
    }
    
    ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
    {
    	size_t ret = cnt;
    
    	/* strings from sysfs write are not 0 terminated! */
    	if (!cnt || cnt >= CS_NAME_LEN)
    		return -EINVAL;
    
    	/* strip of \n: */
    	if (buf[cnt-1] == '\n')
    		cnt--;
    	if (cnt > 0)
    		memcpy(dst, buf, cnt);
    	dst[cnt] = 0;
    	return ret;
    }
    
    /**
     * sysfs_override_clocksource - interface for manually overriding clocksource
     * @dev:	unused
     * @attr:	unused
     * @buf:	name of override clocksource
     * @count:	length of buffer
     *
     * Takes input from sysfs interface for manually overriding the default
     * clocksource selection.
     */
    static ssize_t sysfs_override_clocksource(struct device *dev,
    					  struct device_attribute *attr,
    					  const char *buf, size_t count)
    {
    	ssize_t ret;
    
    	mutex_lock(&clocksource_mutex);
    
    	ret = sysfs_get_uname(buf, override_name, count);
    	if (ret >= 0)
    		clocksource_select();
    
    	mutex_unlock(&clocksource_mutex);
    
    	return ret;
    }
    
    /**
     * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
     * @dev:	unused
     * @attr:	unused
     * @buf:	unused
     * @count:	length of buffer
     *
     * Takes input from sysfs interface for manually unbinding a clocksource.
     */
    static ssize_t sysfs_unbind_clocksource(struct device *dev,
    					struct device_attribute *attr,
    					const char *buf, size_t count)
    {
    	struct clocksource *cs;
    	char name[CS_NAME_LEN];
    	ssize_t ret;
    
    	ret = sysfs_get_uname(buf, name, count);
    	if (ret < 0)
    		return ret;
    
    	ret = -ENODEV;
    	mutex_lock(&clocksource_mutex);
    	list_for_each_entry(cs, &clocksource_list, list) {
    		if (strcmp(cs->name, name))
    			continue;
    		ret = clocksource_unbind(cs);
    		break;
    	}
    	mutex_unlock(&clocksource_mutex);
    
    	return ret ? ret : count;
    }
    
    /**
     * sysfs_show_available_clocksources - sysfs interface for listing clocksource
     * @dev:	unused
     * @attr:	unused
     * @buf:	char buffer to be filled with clocksource list
     *
     * Provides sysfs interface for listing registered clocksources
     */
    static ssize_t
    sysfs_show_available_clocksources(struct device *dev,
    				  struct device_attribute *attr,
    				  char *buf)
    {
    	struct clocksource *src;
    	ssize_t count = 0;
    
    	mutex_lock(&clocksource_mutex);
    	list_for_each_entry(src, &clocksource_list, list) {
    		/*
    		 * Don't show non-HRES clocksource if the tick code is
    		 * in one shot mode (highres=on or nohz=on)
    		 */
    		if (!tick_oneshot_mode_active() ||
    		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
    			count += snprintf(buf + count,
    				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
    				  "%s ", src->name);
    	}
    	mutex_unlock(&clocksource_mutex);
    
    	count += snprintf(buf + count,
    			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
    
    	return count;
    }
    
    /*
     * Sysfs setup bits:
     */
    static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
    		   sysfs_override_clocksource);
    
    static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
    
    static DEVICE_ATTR(available_clocksource, 0444,
    		   sysfs_show_available_clocksources, NULL);
    
    static struct bus_type clocksource_subsys = {
    	.name = "clocksource",
    	.dev_name = "clocksource",
    };
    
    static struct device device_clocksource = {
    	.id	= 0,
    	.bus	= &clocksource_subsys,
    };
    
    static int __init init_clocksource_sysfs(void)
    {
    	int error = subsys_system_register(&clocksource_subsys, NULL);
    
    	if (!error)
    		error = device_register(&device_clocksource);
    	if (!error)
    		error = device_create_file(
    				&device_clocksource,
    				&dev_attr_current_clocksource);
    	if (!error)
    		error = device_create_file(&device_clocksource,
    					   &dev_attr_unbind_clocksource);
    	if (!error)
    		error = device_create_file(
    				&device_clocksource,
    				&dev_attr_available_clocksource);
    	return error;
    }
    
    device_initcall(init_clocksource_sysfs);
    #endif /* CONFIG_SYSFS */
    
    /**
     * boot_override_clocksource - boot clock override
     * @str:	override name
     *
     * Takes a clocksource= boot argument and uses it
     * as the clocksource override name.
     */
    static int __init boot_override_clocksource(char* str)
    {
    	mutex_lock(&clocksource_mutex);
    	if (str)
    		strlcpy(override_name, str, sizeof(override_name));
    	mutex_unlock(&clocksource_mutex);
    	return 1;
    }
    
    __setup("clocksource=", boot_override_clocksource);
    
    /**
     * boot_override_clock - Compatibility layer for deprecated boot option
     * @str:	override name
     *
     * DEPRECATED! Takes a clock= boot argument and uses it
     * as the clocksource override name
     */
    static int __init boot_override_clock(char* str)
    {
    	if (!strcmp(str, "pmtmr")) {
    		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
    		return boot_override_clocksource("acpi_pm");
    	}
    	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
    	return boot_override_clocksource(str);
    }
    
    __setup("clock=", boot_override_clock);