Skip to content
Snippets Groups Projects
Select Git revision
  • 40bc47b08b6efc8b64fef77cb46974f634215425
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_e39-sdio-wp
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • seco_lf-6.6.52-2.2.1_e88-e83-init
  • seco_lf-6.6.52-2.2.1_e88-g101ean02
  • seco_lf-6.6.52-2.2.1_e88-sscg
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-5.10.y
  • integrate/gitlab-ci/use-board-only-instead-codename-and-board-in-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-894-rename-distros-into-build-tergets/into/seco_lf-6.6.52-2.2.1
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

cpuid.c

Blame
  • user avatar
    Jim Mattson authored and Paolo Bonzini committed
    CLZERO is available to the guest if it is supported on the
    host. Therefore, enumerate support for the instruction in
    KVM_GET_SUPPORTED_CPUID whenever it is supported on the host.
    
    Signed-off-by: default avatarJim Mattson <jmattson@google.com>
    Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
    40bc47b0
    History
    Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    cpuid.c 27.00 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    /*
     * Kernel-based Virtual Machine driver for Linux
     * cpuid support routines
     *
     * derived from arch/x86/kvm/x86.c
     *
     * Copyright 2011 Red Hat, Inc. and/or its affiliates.
     * Copyright IBM Corporation, 2008
     */
    
    #include <linux/kvm_host.h>
    #include <linux/export.h>
    #include <linux/vmalloc.h>
    #include <linux/uaccess.h>
    #include <linux/sched/stat.h>
    
    #include <asm/processor.h>
    #include <asm/user.h>
    #include <asm/fpu/xstate.h>
    #include "cpuid.h"
    #include "lapic.h"
    #include "mmu.h"
    #include "trace.h"
    #include "pmu.h"
    
    static u32 xstate_required_size(u64 xstate_bv, bool compacted)
    {
    	int feature_bit = 0;
    	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
    
    	xstate_bv &= XFEATURE_MASK_EXTEND;
    	while (xstate_bv) {
    		if (xstate_bv & 0x1) {
    		        u32 eax, ebx, ecx, edx, offset;
    		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
    			offset = compacted ? ret : ebx;
    			ret = max(ret, offset + eax);
    		}
    
    		xstate_bv >>= 1;
    		feature_bit++;
    	}
    
    	return ret;
    }
    
    bool kvm_mpx_supported(void)
    {
    	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
    		 && kvm_x86_ops->mpx_supported());
    }
    EXPORT_SYMBOL_GPL(kvm_mpx_supported);
    
    u64 kvm_supported_xcr0(void)
    {
    	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
    
    	if (!kvm_mpx_supported())
    		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
    
    	return xcr0;
    }
    
    #define F(x) bit(X86_FEATURE_##x)
    
    int kvm_update_cpuid(struct kvm_vcpu *vcpu)
    {
    	struct kvm_cpuid_entry2 *best;
    	struct kvm_lapic *apic = vcpu->arch.apic;
    
    	best = kvm_find_cpuid_entry(vcpu, 1, 0);
    	if (!best)
    		return 0;
    
    	/* Update OSXSAVE bit */
    	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
    		best->ecx &= ~F(OSXSAVE);
    		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
    			best->ecx |= F(OSXSAVE);
    	}
    
    	best->edx &= ~F(APIC);
    	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
    		best->edx |= F(APIC);
    
    	if (apic) {
    		if (best->ecx & F(TSC_DEADLINE_TIMER))
    			apic->lapic_timer.timer_mode_mask = 3 << 17;
    		else
    			apic->lapic_timer.timer_mode_mask = 1 << 17;
    	}
    
    	best = kvm_find_cpuid_entry(vcpu, 7, 0);
    	if (best) {
    		/* Update OSPKE bit */
    		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
    			best->ecx &= ~F(OSPKE);
    			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
    				best->ecx |= F(OSPKE);
    		}
    	}
    
    	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
    	if (!best) {
    		vcpu->arch.guest_supported_xcr0 = 0;
    		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
    	} else {
    		vcpu->arch.guest_supported_xcr0 =
    			(best->eax | ((u64)best->edx << 32)) &
    			kvm_supported_xcr0();
    		vcpu->arch.guest_xstate_size = best->ebx =
    			xstate_required_size(vcpu->arch.xcr0, false);
    	}
    
    	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
    	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
    		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
    
    	/*
    	 * The existing code assumes virtual address is 48-bit or 57-bit in the
    	 * canonical address checks; exit if it is ever changed.
    	 */
    	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
    	if (best) {
    		int vaddr_bits = (best->eax & 0xff00) >> 8;
    
    		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
    			return -EINVAL;
    	}
    
    	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
    	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
    		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
    		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
    
    	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
    		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
    		if (best) {
    			if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
    				best->ecx |= F(MWAIT);
    			else
    				best->ecx &= ~F(MWAIT);
    		}
    	}
    
    	/* Update physical-address width */
    	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
    	kvm_mmu_reset_context(vcpu);
    
    	kvm_pmu_refresh(vcpu);
    	return 0;
    }
    
    static int is_efer_nx(void)
    {
    	unsigned long long efer = 0;
    
    	rdmsrl_safe(MSR_EFER, &efer);
    	return efer & EFER_NX;
    }
    
    static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
    {
    	int i;
    	struct kvm_cpuid_entry2 *e, *entry;
    
    	entry = NULL;
    	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
    		e = &vcpu->arch.cpuid_entries[i];
    		if (e->function == 0x80000001) {
    			entry = e;
    			break;
    		}
    	}
    	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
    		entry->edx &= ~F(NX);
    		printk(KERN_INFO "kvm: guest NX capability removed\n");
    	}
    }
    
    int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
    {
    	struct kvm_cpuid_entry2 *best;
    
    	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
    	if (!best || best->eax < 0x80000008)
    		goto not_found;
    	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
    	if (best)
    		return best->eax & 0xff;
    not_found:
    	return 36;
    }
    EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
    
    /* when an old userspace process fills a new kernel module */
    int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
    			     struct kvm_cpuid *cpuid,
    			     struct kvm_cpuid_entry __user *entries)
    {
    	int r, i;
    	struct kvm_cpuid_entry *cpuid_entries = NULL;
    
    	r = -E2BIG;
    	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
    		goto out;
    	r = -ENOMEM;
    	if (cpuid->nent) {
    		cpuid_entries =
    			vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
    					   cpuid->nent));
    		if (!cpuid_entries)
    			goto out;
    		r = -EFAULT;
    		if (copy_from_user(cpuid_entries, entries,
    				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
    			goto out;
    	}
    	for (i = 0; i < cpuid->nent; i++) {
    		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
    		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
    		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
    		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
    		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
    		vcpu->arch.cpuid_entries[i].index = 0;
    		vcpu->arch.cpuid_entries[i].flags = 0;
    		vcpu->arch.cpuid_entries[i].padding[0] = 0;
    		vcpu->arch.cpuid_entries[i].padding[1] = 0;
    		vcpu->arch.cpuid_entries[i].padding[2] = 0;
    	}
    	vcpu->arch.cpuid_nent = cpuid->nent;
    	cpuid_fix_nx_cap(vcpu);
    	kvm_apic_set_version(vcpu);
    	kvm_x86_ops->cpuid_update(vcpu);
    	r = kvm_update_cpuid(vcpu);
    
    out:
    	vfree(cpuid_entries);
    	return r;
    }
    
    int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
    			      struct kvm_cpuid2 *cpuid,
    			      struct kvm_cpuid_entry2 __user *entries)
    {
    	int r;
    
    	r = -E2BIG;
    	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
    		goto out;
    	r = -EFAULT;
    	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
    			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
    		goto out;
    	vcpu->arch.cpuid_nent = cpuid->nent;
    	kvm_apic_set_version(vcpu);
    	kvm_x86_ops->cpuid_update(vcpu);
    	r = kvm_update_cpuid(vcpu);
    out:
    	return r;
    }
    
    int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
    			      struct kvm_cpuid2 *cpuid,
    			      struct kvm_cpuid_entry2 __user *entries)
    {
    	int r;
    
    	r = -E2BIG;
    	if (cpuid->nent < vcpu->arch.cpuid_nent)
    		goto out;
    	r = -EFAULT;
    	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
    			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
    		goto out;
    	return 0;
    
    out:
    	cpuid->nent = vcpu->arch.cpuid_nent;
    	return r;
    }
    
    static void cpuid_mask(u32 *word, int wordnum)
    {
    	*word &= boot_cpu_data.x86_capability[wordnum];
    }
    
    static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
    			   u32 index)
    {
    	entry->function = function;
    	entry->index = index;
    	entry->flags = 0;
    
    	cpuid_count(entry->function, entry->index,
    		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
    
    	switch (function) {
    	case 2:
    		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
    		break;
    	case 4:
    	case 7:
    	case 0xb:
    	case 0xd:
    	case 0xf:
    	case 0x10:
    	case 0x12:
    	case 0x14:
    	case 0x17:
    	case 0x18:
    	case 0x1f:
    	case 0x8000001d:
    		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
    		break;
    	}
    }
    
    static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
    				    u32 func, int *nent, int maxnent)
    {
    	entry->function = func;
    	entry->index = 0;
    	entry->flags = 0;
    
    	switch (func) {
    	case 0:
    		entry->eax = 7;
    		++*nent;
    		break;
    	case 1:
    		entry->ecx = F(MOVBE);
    		++*nent;
    		break;
    	case 7:
    		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
    		entry->eax = 0;
    		entry->ecx = F(RDPID);
    		++*nent;
    	default:
    		break;
    	}
    
    	return 0;
    }
    
    static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
    {
    	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
    	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
    	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
    	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
    	unsigned f_la57;
    
    	/* cpuid 7.0.ebx */
    	const u32 kvm_cpuid_7_0_ebx_x86_features =
    		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
    		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
    		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
    		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
    		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
    
    	/* cpuid 7.0.ecx*/
    	const u32 kvm_cpuid_7_0_ecx_x86_features =
    		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
    		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
    		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
    		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
    
    	/* cpuid 7.0.edx*/
    	const u32 kvm_cpuid_7_0_edx_x86_features =
    		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
    		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
    		F(MD_CLEAR);
    
    	/* cpuid 7.1.eax */
    	const u32 kvm_cpuid_7_1_eax_x86_features =
    		F(AVX512_BF16);
    
    	switch (index) {
    	case 0:
    		entry->eax = min(entry->eax, 1u);
    		entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
    		cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
    		/* TSC_ADJUST is emulated */
    		entry->ebx |= F(TSC_ADJUST);
    
    		entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
    		f_la57 = entry->ecx & F(LA57);
    		cpuid_mask(&entry->ecx, CPUID_7_ECX);
    		/* Set LA57 based on hardware capability. */
    		entry->ecx |= f_la57;
    		entry->ecx |= f_umip;
    		/* PKU is not yet implemented for shadow paging. */
    		if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
    			entry->ecx &= ~F(PKU);
    
    		entry->edx &= kvm_cpuid_7_0_edx_x86_features;
    		cpuid_mask(&entry->edx, CPUID_7_EDX);
    		if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
    			entry->edx |= F(SPEC_CTRL);
    		if (boot_cpu_has(X86_FEATURE_STIBP))
    			entry->edx |= F(INTEL_STIBP);
    		if (boot_cpu_has(X86_FEATURE_SSBD))
    			entry->edx |= F(SPEC_CTRL_SSBD);
    		/*
    		 * We emulate ARCH_CAPABILITIES in software even
    		 * if the host doesn't support it.
    		 */
    		entry->edx |= F(ARCH_CAPABILITIES);
    		break;
    	case 1:
    		entry->eax &= kvm_cpuid_7_1_eax_x86_features;
    		entry->ebx = 0;
    		entry->ecx = 0;
    		entry->edx = 0;
    		break;
    	default:
    		WARN_ON_ONCE(1);
    		entry->eax = 0;
    		entry->ebx = 0;
    		entry->ecx = 0;
    		entry->edx = 0;
    		break;
    	}
    }
    
    static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
    				  int *nent, int maxnent)
    {
    	int r;
    	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
    #ifdef CONFIG_X86_64
    	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
    				? F(GBPAGES) : 0;
    	unsigned f_lm = F(LM);
    #else
    	unsigned f_gbpages = 0;
    	unsigned f_lm = 0;
    #endif
    	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
    	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
    	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
    
    	/* cpuid 1.edx */
    	const u32 kvm_cpuid_1_edx_x86_features =
    		F(FPU) | F(VME) | F(DE) | F(PSE) |
    		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
    		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
    		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
    		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
    		0 /* Reserved, DS, ACPI */ | F(MMX) |
    		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
    		0 /* HTT, TM, Reserved, PBE */;
    	/* cpuid 0x80000001.edx */
    	const u32 kvm_cpuid_8000_0001_edx_x86_features =
    		F(FPU) | F(VME) | F(DE) | F(PSE) |
    		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
    		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
    		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
    		F(PAT) | F(PSE36) | 0 /* Reserved */ |
    		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
    		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
    		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
    	/* cpuid 1.ecx */
    	const u32 kvm_cpuid_1_ecx_x86_features =
    		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
    		 * but *not* advertised to guests via CPUID ! */
    		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
    		0 /* DS-CPL, VMX, SMX, EST */ |
    		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
    		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
    		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
    		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
    		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
    		F(F16C) | F(RDRAND);
    	/* cpuid 0x80000001.ecx */
    	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
    		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
    		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
    		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
    		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
    		F(TOPOEXT) | F(PERFCTR_CORE);
    
    	/* cpuid 0x80000008.ebx */
    	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
    		F(CLZERO) | F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) |
    		F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) | F(AMD_SSBD) |
    		F(VIRT_SSBD) | F(AMD_SSB_NO);
    
    	/* cpuid 0xC0000001.edx */
    	const u32 kvm_cpuid_C000_0001_edx_x86_features =
    		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
    		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
    		F(PMM) | F(PMM_EN);
    
    	/* cpuid 0xD.1.eax */
    	const u32 kvm_cpuid_D_1_eax_x86_features =
    		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
    
    	/* all calls to cpuid_count() should be made on the same cpu */
    	get_cpu();
    
    	r = -E2BIG;
    
    	if (*nent >= maxnent)
    		goto out;
    
    	do_host_cpuid(entry, function, 0);
    	++*nent;
    
    	switch (function) {
    	case 0:
    		/* Limited to the highest leaf implemented in KVM. */
    		entry->eax = min(entry->eax, 0x1fU);
    		break;
    	case 1:
    		entry->edx &= kvm_cpuid_1_edx_x86_features;
    		cpuid_mask(&entry->edx, CPUID_1_EDX);
    		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
    		cpuid_mask(&entry->ecx, CPUID_1_ECX);
    		/* we support x2apic emulation even if host does not support
    		 * it since we emulate x2apic in software */
    		entry->ecx |= F(X2APIC);
    		break;
    	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
    	 * may return different values. This forces us to get_cpu() before
    	 * issuing the first command, and also to emulate this annoying behavior
    	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
    	case 2: {
    		int t, times = entry->eax & 0xff;
    
    		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
    		for (t = 1; t < times; ++t) {
    			if (*nent >= maxnent)
    				goto out;
    
    			do_host_cpuid(&entry[t], function, 0);
    			++*nent;
    		}
    		break;
    	}
    	/* functions 4 and 0x8000001d have additional index. */
    	case 4:
    	case 0x8000001d: {
    		int i, cache_type;
    
    		/* read more entries until cache_type is zero */
    		for (i = 1; ; ++i) {
    			if (*nent >= maxnent)
    				goto out;
    
    			cache_type = entry[i - 1].eax & 0x1f;
    			if (!cache_type)
    				break;
    			do_host_cpuid(&entry[i], function, i);
    			++*nent;
    		}
    		break;
    	}
    	case 6: /* Thermal management */
    		entry->eax = 0x4; /* allow ARAT */
    		entry->ebx = 0;
    		entry->ecx = 0;
    		entry->edx = 0;
    		break;
    	/* function 7 has additional index. */
    	case 7: {
    		int i;
    
    		for (i = 0; ; ) {
    			do_cpuid_7_mask(&entry[i], i);
    			if (i == entry->eax)
    				break;
    			if (*nent >= maxnent)
    				goto out;
    
    			++i;
    			do_host_cpuid(&entry[i], function, i);
    			++*nent;
    		}
    		break;
    	}
    	case 9:
    		break;
    	case 0xa: { /* Architectural Performance Monitoring */
    		struct x86_pmu_capability cap;
    		union cpuid10_eax eax;
    		union cpuid10_edx edx;
    
    		perf_get_x86_pmu_capability(&cap);
    
    		/*
    		 * Only support guest architectural pmu on a host
    		 * with architectural pmu.
    		 */
    		if (!cap.version)
    			memset(&cap, 0, sizeof(cap));
    
    		eax.split.version_id = min(cap.version, 2);
    		eax.split.num_counters = cap.num_counters_gp;
    		eax.split.bit_width = cap.bit_width_gp;
    		eax.split.mask_length = cap.events_mask_len;
    
    		edx.split.num_counters_fixed = cap.num_counters_fixed;
    		edx.split.bit_width_fixed = cap.bit_width_fixed;
    		edx.split.reserved = 0;
    
    		entry->eax = eax.full;
    		entry->ebx = cap.events_mask;
    		entry->ecx = 0;
    		entry->edx = edx.full;
    		break;
    	}
    	/*
    	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
    	 * thus they can be handled by common code.
    	 */
    	case 0x1f:
    	case 0xb: {
    		int i;
    
    		/*
    		 * We filled in entry[0] for CPUID(EAX=<function>,
    		 * ECX=00H) above.  If its level type (ECX[15:8]) is
    		 * zero, then the leaf is unimplemented, and we're
    		 * done.  Otherwise, continue to populate entries
    		 * until the level type (ECX[15:8]) of the previously
    		 * added entry is zero.
    		 */
    		for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
    			if (*nent >= maxnent)
    				goto out;
    
    			do_host_cpuid(&entry[i], function, i);
    			++*nent;
    		}
    		break;
    	}
    	case 0xd: {
    		int idx, i;
    		u64 supported = kvm_supported_xcr0();
    
    		entry->eax &= supported;
    		entry->ebx = xstate_required_size(supported, false);
    		entry->ecx = entry->ebx;
    		entry->edx &= supported >> 32;
    		if (!supported)
    			break;
    
    		for (idx = 1, i = 1; idx < 64; ++idx) {
    			u64 mask = ((u64)1 << idx);
    			if (*nent >= maxnent)
    				goto out;
    
    			do_host_cpuid(&entry[i], function, idx);
    			if (idx == 1) {
    				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
    				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
    				entry[i].ebx = 0;
    				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
    					entry[i].ebx =
    						xstate_required_size(supported,
    								     true);
    			} else {
    				if (entry[i].eax == 0 || !(supported & mask))
    					continue;
    				if (WARN_ON_ONCE(entry[i].ecx & 1))
    					continue;
    			}
    			entry[i].ecx = 0;
    			entry[i].edx = 0;
    			++*nent;
    			++i;
    		}
    		break;
    	}
    	/* Intel PT */
    	case 0x14: {
    		int t, times = entry->eax;
    
    		if (!f_intel_pt)
    			break;
    
    		for (t = 1; t <= times; ++t) {
    			if (*nent >= maxnent)
    				goto out;
    			do_host_cpuid(&entry[t], function, t);
    			++*nent;
    		}
    		break;
    	}
    	case KVM_CPUID_SIGNATURE: {
    		static const char signature[12] = "KVMKVMKVM\0\0";
    		const u32 *sigptr = (const u32 *)signature;
    		entry->eax = KVM_CPUID_FEATURES;
    		entry->ebx = sigptr[0];
    		entry->ecx = sigptr[1];
    		entry->edx = sigptr[2];
    		break;
    	}
    	case KVM_CPUID_FEATURES:
    		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
    			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
    			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
    			     (1 << KVM_FEATURE_ASYNC_PF) |
    			     (1 << KVM_FEATURE_PV_EOI) |
    			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
    			     (1 << KVM_FEATURE_PV_UNHALT) |
    			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
    			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
    			     (1 << KVM_FEATURE_PV_SEND_IPI) |
    			     (1 << KVM_FEATURE_POLL_CONTROL) |
    			     (1 << KVM_FEATURE_PV_SCHED_YIELD);
    
    		if (sched_info_on())
    			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
    
    		entry->ebx = 0;
    		entry->ecx = 0;
    		entry->edx = 0;
    		break;
    	case 0x80000000:
    		entry->eax = min(entry->eax, 0x8000001f);
    		break;
    	case 0x80000001:
    		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
    		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
    		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
    		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
    		break;
    	case 0x80000007: /* Advanced power management */
    		/* invariant TSC is CPUID.80000007H:EDX[8] */
    		entry->edx &= (1 << 8);
    		/* mask against host */
    		entry->edx &= boot_cpu_data.x86_power;
    		entry->eax = entry->ebx = entry->ecx = 0;
    		break;
    	case 0x80000008: {
    		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
    		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
    		unsigned phys_as = entry->eax & 0xff;
    
    		if (!g_phys_as)
    			g_phys_as = phys_as;
    		entry->eax = g_phys_as | (virt_as << 8);
    		entry->edx = 0;
    		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
    		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
    		/*
    		 * AMD has separate bits for each SPEC_CTRL bit.
    		 * arch/x86/kernel/cpu/bugs.c is kind enough to
    		 * record that in cpufeatures so use them.
    		 */
    		if (boot_cpu_has(X86_FEATURE_IBPB))
    			entry->ebx |= F(AMD_IBPB);
    		if (boot_cpu_has(X86_FEATURE_IBRS))
    			entry->ebx |= F(AMD_IBRS);
    		if (boot_cpu_has(X86_FEATURE_STIBP))
    			entry->ebx |= F(AMD_STIBP);
    		if (boot_cpu_has(X86_FEATURE_SSBD))
    			entry->ebx |= F(AMD_SSBD);
    		if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
    			entry->ebx |= F(AMD_SSB_NO);
    		/*
    		 * The preference is to use SPEC CTRL MSR instead of the
    		 * VIRT_SPEC MSR.
    		 */
    		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
    		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
    			entry->ebx |= F(VIRT_SSBD);
    		break;
    	}
    	case 0x80000019:
    		entry->ecx = entry->edx = 0;
    		break;
    	case 0x8000001a:
    	case 0x8000001e:
    		break;
    	/*Add support for Centaur's CPUID instruction*/
    	case 0xC0000000:
    		/*Just support up to 0xC0000004 now*/
    		entry->eax = min(entry->eax, 0xC0000004);
    		break;
    	case 0xC0000001:
    		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
    		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
    		break;
    	case 3: /* Processor serial number */
    	case 5: /* MONITOR/MWAIT */
    	case 0xC0000002:
    	case 0xC0000003:
    	case 0xC0000004:
    	default:
    		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
    		break;
    	}
    
    	kvm_x86_ops->set_supported_cpuid(function, entry);
    
    	r = 0;
    
    out:
    	put_cpu();
    
    	return r;
    }
    
    static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
    			 int *nent, int maxnent, unsigned int type)
    {
    	if (type == KVM_GET_EMULATED_CPUID)
    		return __do_cpuid_func_emulated(entry, func, nent, maxnent);
    
    	return __do_cpuid_func(entry, func, nent, maxnent);
    }
    
    #undef F
    
    struct kvm_cpuid_param {
    	u32 func;
    	bool (*qualifier)(const struct kvm_cpuid_param *param);
    };
    
    static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
    {
    	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
    }
    
    static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
    				 __u32 num_entries, unsigned int ioctl_type)
    {
    	int i;
    	__u32 pad[3];
    
    	if (ioctl_type != KVM_GET_EMULATED_CPUID)
    		return false;
    
    	/*
    	 * We want to make sure that ->padding is being passed clean from
    	 * userspace in case we want to use it for something in the future.
    	 *
    	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
    	 * have to give ourselves satisfied only with the emulated side. /me
    	 * sheds a tear.
    	 */
    	for (i = 0; i < num_entries; i++) {
    		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
    			return true;
    
    		if (pad[0] || pad[1] || pad[2])
    			return true;
    	}
    	return false;
    }
    
    int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
    			    struct kvm_cpuid_entry2 __user *entries,
    			    unsigned int type)
    {
    	struct kvm_cpuid_entry2 *cpuid_entries;
    	int limit, nent = 0, r = -E2BIG, i;
    	u32 func;
    	static const struct kvm_cpuid_param param[] = {
    		{ .func = 0 },
    		{ .func = 0x80000000 },
    		{ .func = 0xC0000000, .qualifier = is_centaur_cpu },
    		{ .func = KVM_CPUID_SIGNATURE },
    	};
    
    	if (cpuid->nent < 1)
    		goto out;
    	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
    		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
    
    	if (sanity_check_entries(entries, cpuid->nent, type))
    		return -EINVAL;
    
    	r = -ENOMEM;
    	cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
    					   cpuid->nent));
    	if (!cpuid_entries)
    		goto out;
    
    	r = 0;
    	for (i = 0; i < ARRAY_SIZE(param); i++) {
    		const struct kvm_cpuid_param *ent = &param[i];
    
    		if (ent->qualifier && !ent->qualifier(ent))
    			continue;
    
    		r = do_cpuid_func(&cpuid_entries[nent], ent->func,
    				  &nent, cpuid->nent, type);
    
    		if (r)
    			goto out_free;
    
    		limit = cpuid_entries[nent - 1].eax;
    		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
    			r = do_cpuid_func(&cpuid_entries[nent], func,
    				          &nent, cpuid->nent, type);
    
    		if (r)
    			goto out_free;
    	}
    
    	r = -EFAULT;
    	if (copy_to_user(entries, cpuid_entries,
    			 nent * sizeof(struct kvm_cpuid_entry2)))
    		goto out_free;
    	cpuid->nent = nent;
    	r = 0;
    
    out_free:
    	vfree(cpuid_entries);
    out:
    	return r;
    }
    
    static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
    {
    	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
    	struct kvm_cpuid_entry2 *ej;
    	int j = i;
    	int nent = vcpu->arch.cpuid_nent;
    
    	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
    	/* when no next entry is found, the current entry[i] is reselected */
    	do {
    		j = (j + 1) % nent;
    		ej = &vcpu->arch.cpuid_entries[j];
    	} while (ej->function != e->function);
    
    	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
    
    	return j;
    }
    
    /* find an entry with matching function, matching index (if needed), and that
     * should be read next (if it's stateful) */
    static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
    	u32 function, u32 index)
    {
    	if (e->function != function)
    		return 0;
    	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
    		return 0;
    	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
    	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
    		return 0;
    	return 1;
    }
    
    struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
    					      u32 function, u32 index)
    {
    	int i;
    	struct kvm_cpuid_entry2 *best = NULL;
    
    	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
    		struct kvm_cpuid_entry2 *e;
    
    		e = &vcpu->arch.cpuid_entries[i];
    		if (is_matching_cpuid_entry(e, function, index)) {
    			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
    				move_to_next_stateful_cpuid_entry(vcpu, i);
    			best = e;
    			break;
    		}
    	}
    	return best;
    }
    EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
    
    /*
     * If the basic or extended CPUID leaf requested is higher than the
     * maximum supported basic or extended leaf, respectively, then it is
     * out of range.
     */
    static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
    {
    	struct kvm_cpuid_entry2 *max;
    
    	max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
    	return max && function <= max->eax;
    }
    
    bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
    	       u32 *ecx, u32 *edx, bool check_limit)
    {
    	u32 function = *eax, index = *ecx;
    	struct kvm_cpuid_entry2 *entry;
    	struct kvm_cpuid_entry2 *max;
    	bool found;
    
    	entry = kvm_find_cpuid_entry(vcpu, function, index);
    	found = entry;
    	/*
    	 * Intel CPUID semantics treats any query for an out-of-range
    	 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
    	 * requested. AMD CPUID semantics returns all zeroes for any
    	 * undefined leaf, whether or not the leaf is in range.
    	 */
    	if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
    	    !cpuid_function_in_range(vcpu, function)) {
    		max = kvm_find_cpuid_entry(vcpu, 0, 0);
    		if (max) {
    			function = max->eax;
    			entry = kvm_find_cpuid_entry(vcpu, function, index);
    		}
    	}
    	if (entry) {
    		*eax = entry->eax;
    		*ebx = entry->ebx;
    		*ecx = entry->ecx;
    		*edx = entry->edx;
    	} else {
    		*eax = *ebx = *ecx = *edx = 0;
    		/*
    		 * When leaf 0BH or 1FH is defined, CL is pass-through
    		 * and EDX is always the x2APIC ID, even for undefined
    		 * subleaves. Index 1 will exist iff the leaf is
    		 * implemented, so we pass through CL iff leaf 1
    		 * exists. EDX can be copied from any existing index.
    		 */
    		if (function == 0xb || function == 0x1f) {
    			entry = kvm_find_cpuid_entry(vcpu, function, 1);
    			if (entry) {
    				*ecx = index & 0xff;
    				*edx = entry->edx;
    			}
    		}
    	}
    	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
    	return found;
    }
    EXPORT_SYMBOL_GPL(kvm_cpuid);
    
    int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
    {
    	u32 eax, ebx, ecx, edx;
    
    	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
    		return 1;
    
    	eax = kvm_rax_read(vcpu);
    	ecx = kvm_rcx_read(vcpu);
    	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
    	kvm_rax_write(vcpu, eax);
    	kvm_rbx_write(vcpu, ebx);
    	kvm_rcx_write(vcpu, ecx);
    	kvm_rdx_write(vcpu, edx);
    	return kvm_skip_emulated_instruction(vcpu);
    }
    EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);