Skip to content
Snippets Groups Projects
Select Git revision
  • 0845735e2d1e4c177076d4bc2d841d9f77e95131
  • seco_lf-6.6.52-2.2.1 default protected
  • seco_lf-6.6.52-2.2.1_d18-e83
  • seco_lf-6.6.52-2.2.1_d18-e71
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-b79-tlv-note
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-5.10.y
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-3/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-2/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity-1/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-896-remane-parameters-for-clarity/into/seco_lf-6.6.52-2.2.1
  • seco_lf-6.6.52-2.2.1_mx8m-sscg
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/cleaos-913-add-retry-build-job-into-the-configuration/into/seco_lf-5.10.y
  • seco_lf-5.10.y protected
  • seco_lf_v2024.04_6.6.52_2.2.x-d18-sai
  • seco_lf-6.6.52-2.2.1_e88-lt9611uxc-i2s
  • seco_lf-6.6.52-2.2.1_d18-e71-dev
  • seco_lf-6.6.52-2.2.1_d18-dt-dto-elems
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-6.6.52-2.2.1
  • integrate/gitlab-ci/create-config-validation-json-schema/into/seco_lf-5.10.y
  • seco_lf-6.6.52-2.2.1_e88-e83-dev
  • lf-6.6.52-2.2.1
  • lf-6.1.55-2.2.1
  • lf-6.6.3-1.0.0
  • lf-6.6.3-imx95-er2
  • lf-6.1.55-2.2.0
  • lf-6.6.y-imx95-er1
  • lf-5.15.71-2.2.2
  • lf-6.1.36-2.1.0
  • lf-5.15.71-2.2.1
  • lf-6.1.22-2.0.0
  • lf-6.1.1-1.0.1
  • rel_imx_5.4.24_2.1.4
  • rel_imx_4.9.88_2.0.13
  • rel_imx_4.14.98_2.3.5
  • lf-6.1.1-1.0.0
  • rel_imx_5.4.3_2.0.2
  • lf-5.15.71-2.2.0
  • lf-5.10.72-2.2.3
  • lf-5.15.52-2.1.0
  • imx_5.15.52_imx8ulp_er1
41 results

main.c

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    raid1.c 66.50 KiB
    /*
     * raid1.c : Multiple Devices driver for Linux
     *
     * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
     *
     * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
     *
     * RAID-1 management functions.
     *
     * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
     *
     * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
     * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
     *
     * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
     * bitmapped intelligence in resync:
     *
     *      - bitmap marked during normal i/o
     *      - bitmap used to skip nondirty blocks during sync
     *
     * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
     * - persistent bitmap code
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2, or (at your option)
     * any later version.
     *
     * You should have received a copy of the GNU General Public License
     * (for example /usr/src/linux/COPYING); if not, write to the Free
     * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     */
    
    #include <linux/slab.h>
    #include <linux/delay.h>
    #include <linux/blkdev.h>
    #include <linux/seq_file.h>
    #include <linux/ratelimit.h>
    #include "md.h"
    #include "raid1.h"
    #include "bitmap.h"
    
    #define DEBUG 0
    #define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
    
    /*
     * Number of guaranteed r1bios in case of extreme VM load:
     */
    #define	NR_RAID1_BIOS 256
    
    
    static void allow_barrier(conf_t *conf);
    static void lower_barrier(conf_t *conf);
    
    static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
    {
    	struct pool_info *pi = data;
    	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
    
    	/* allocate a r1bio with room for raid_disks entries in the bios array */
    	return kzalloc(size, gfp_flags);
    }
    
    static void r1bio_pool_free(void *r1_bio, void *data)
    {
    	kfree(r1_bio);
    }
    
    #define RESYNC_BLOCK_SIZE (64*1024)
    //#define RESYNC_BLOCK_SIZE PAGE_SIZE
    #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
    #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
    #define RESYNC_WINDOW (2048*1024)
    
    static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
    {
    	struct pool_info *pi = data;
    	struct page *page;
    	r1bio_t *r1_bio;
    	struct bio *bio;
    	int i, j;
    
    	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
    	if (!r1_bio)
    		return NULL;
    
    	/*
    	 * Allocate bios : 1 for reading, n-1 for writing
    	 */
    	for (j = pi->raid_disks ; j-- ; ) {
    		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
    		if (!bio)
    			goto out_free_bio;
    		r1_bio->bios[j] = bio;
    	}
    	/*
    	 * Allocate RESYNC_PAGES data pages and attach them to
    	 * the first bio.
    	 * If this is a user-requested check/repair, allocate
    	 * RESYNC_PAGES for each bio.
    	 */
    	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
    		j = pi->raid_disks;
    	else
    		j = 1;
    	while(j--) {
    		bio = r1_bio->bios[j];
    		for (i = 0; i < RESYNC_PAGES; i++) {
    			page = alloc_page(gfp_flags);
    			if (unlikely(!page))
    				goto out_free_pages;
    
    			bio->bi_io_vec[i].bv_page = page;
    			bio->bi_vcnt = i+1;
    		}
    	}
    	/* If not user-requests, copy the page pointers to all bios */
    	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
    		for (i=0; i<RESYNC_PAGES ; i++)
    			for (j=1; j<pi->raid_disks; j++)
    				r1_bio->bios[j]->bi_io_vec[i].bv_page =
    					r1_bio->bios[0]->bi_io_vec[i].bv_page;
    	}
    
    	r1_bio->master_bio = NULL;
    
    	return r1_bio;
    
    out_free_pages:
    	for (j=0 ; j < pi->raid_disks; j++)
    		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
    			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
    	j = -1;
    out_free_bio:
    	while ( ++j < pi->raid_disks )
    		bio_put(r1_bio->bios[j]);
    	r1bio_pool_free(r1_bio, data);
    	return NULL;
    }
    
    static void r1buf_pool_free(void *__r1_bio, void *data)
    {
    	struct pool_info *pi = data;
    	int i,j;
    	r1bio_t *r1bio = __r1_bio;
    
    	for (i = 0; i < RESYNC_PAGES; i++)
    		for (j = pi->raid_disks; j-- ;) {
    			if (j == 0 ||
    			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
    			    r1bio->bios[0]->bi_io_vec[i].bv_page)
    				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
    		}
    	for (i=0 ; i < pi->raid_disks; i++)
    		bio_put(r1bio->bios[i]);
    
    	r1bio_pool_free(r1bio, data);
    }
    
    static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
    {
    	int i;
    
    	for (i = 0; i < conf->raid_disks; i++) {
    		struct bio **bio = r1_bio->bios + i;
    		if (*bio && *bio != IO_BLOCKED)
    			bio_put(*bio);
    		*bio = NULL;
    	}
    }
    
    static void free_r1bio(r1bio_t *r1_bio)
    {
    	conf_t *conf = r1_bio->mddev->private;
    
    	put_all_bios(conf, r1_bio);
    	mempool_free(r1_bio, conf->r1bio_pool);
    }
    
    static void put_buf(r1bio_t *r1_bio)
    {
    	conf_t *conf = r1_bio->mddev->private;
    	int i;
    
    	for (i=0; i<conf->raid_disks; i++) {
    		struct bio *bio = r1_bio->bios[i];
    		if (bio->bi_end_io)
    			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
    	}
    
    	mempool_free(r1_bio, conf->r1buf_pool);
    
    	lower_barrier(conf);
    }
    
    static void reschedule_retry(r1bio_t *r1_bio)
    {
    	unsigned long flags;
    	mddev_t *mddev = r1_bio->mddev;
    	conf_t *conf = mddev->private;
    
    	spin_lock_irqsave(&conf->device_lock, flags);
    	list_add(&r1_bio->retry_list, &conf->retry_list);
    	conf->nr_queued ++;
    	spin_unlock_irqrestore(&conf->device_lock, flags);
    
    	wake_up(&conf->wait_barrier);
    	md_wakeup_thread(mddev->thread);
    }
    
    /*
     * raid_end_bio_io() is called when we have finished servicing a mirrored
     * operation and are ready to return a success/failure code to the buffer
     * cache layer.
     */
    static void call_bio_endio(r1bio_t *r1_bio)
    {
    	struct bio *bio = r1_bio->master_bio;
    	int done;
    	conf_t *conf = r1_bio->mddev->private;
    
    	if (bio->bi_phys_segments) {
    		unsigned long flags;
    		spin_lock_irqsave(&conf->device_lock, flags);
    		bio->bi_phys_segments--;
    		done = (bio->bi_phys_segments == 0);
    		spin_unlock_irqrestore(&conf->device_lock, flags);
    	} else
    		done = 1;
    
    	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
    		clear_bit(BIO_UPTODATE, &bio->bi_flags);
    	if (done) {
    		bio_endio(bio, 0);
    		/*
    		 * Wake up any possible resync thread that waits for the device
    		 * to go idle.
    		 */
    		allow_barrier(conf);
    	}
    }
    
    static void raid_end_bio_io(r1bio_t *r1_bio)
    {
    	struct bio *bio = r1_bio->master_bio;
    
    	/* if nobody has done the final endio yet, do it now */
    	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
    		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
    			(bio_data_dir(bio) == WRITE) ? "write" : "read",
    			(unsigned long long) bio->bi_sector,
    			(unsigned long long) bio->bi_sector +
    				(bio->bi_size >> 9) - 1);
    
    		call_bio_endio(r1_bio);
    	}
    	free_r1bio(r1_bio);
    }
    
    /*
     * Update disk head position estimator based on IRQ completion info.
     */
    static inline void update_head_pos(int disk, r1bio_t *r1_bio)
    {
    	conf_t *conf = r1_bio->mddev->private;
    
    	conf->mirrors[disk].head_position =
    		r1_bio->sector + (r1_bio->sectors);
    }
    
    static void raid1_end_read_request(struct bio *bio, int error)
    {
    	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
    	r1bio_t *r1_bio = bio->bi_private;
    	int mirror;
    	conf_t *conf = r1_bio->mddev->private;
    
    	mirror = r1_bio->read_disk;
    	/*
    	 * this branch is our 'one mirror IO has finished' event handler:
    	 */
    	update_head_pos(mirror, r1_bio);
    
    	if (uptodate)
    		set_bit(R1BIO_Uptodate, &r1_bio->state);
    	else {
    		/* If all other devices have failed, we want to return
    		 * the error upwards rather than fail the last device.
    		 * Here we redefine "uptodate" to mean "Don't want to retry"
    		 */
    		unsigned long flags;
    		spin_lock_irqsave(&conf->device_lock, flags);
    		if (r1_bio->mddev->degraded == conf->raid_disks ||
    		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
    		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
    			uptodate = 1;
    		spin_unlock_irqrestore(&conf->device_lock, flags);
    	}
    
    	if (uptodate)
    		raid_end_bio_io(r1_bio);
    	else {
    		/*
    		 * oops, read error:
    		 */
    		char b[BDEVNAME_SIZE];
    		printk_ratelimited(
    			KERN_ERR "md/raid1:%s: %s: "
    			"rescheduling sector %llu\n",
    			mdname(conf->mddev),
    			bdevname(conf->mirrors[mirror].rdev->bdev,
    				 b),
    			(unsigned long long)r1_bio->sector);
    		set_bit(R1BIO_ReadError, &r1_bio->state);
    		reschedule_retry(r1_bio);
    	}
    
    	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
    }
    
    static void r1_bio_write_done(r1bio_t *r1_bio)
    {
    	if (atomic_dec_and_test(&r1_bio->remaining))
    	{
    		/* it really is the end of this request */
    		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
    			/* free extra copy of the data pages */
    			int i = r1_bio->behind_page_count;
    			while (i--)
    				safe_put_page(r1_bio->behind_pages[i]);
    			kfree(r1_bio->behind_pages);
    			r1_bio->behind_pages = NULL;
    		}
    		/* clear the bitmap if all writes complete successfully */
    		bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
    				r1_bio->sectors,
    				!test_bit(R1BIO_Degraded, &r1_bio->state),
    				test_bit(R1BIO_BehindIO, &r1_bio->state));
    		md_write_end(r1_bio->mddev);
    		raid_end_bio_io(r1_bio);
    	}
    }
    
    static void raid1_end_write_request(struct bio *bio, int error)
    {
    	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
    	r1bio_t *r1_bio = bio->bi_private;
    	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
    	conf_t *conf = r1_bio->mddev->private;
    	struct bio *to_put = NULL;
    
    
    	for (mirror = 0; mirror < conf->raid_disks; mirror++)
    		if (r1_bio->bios[mirror] == bio)
    			break;
    
    	/*
    	 * 'one mirror IO has finished' event handler:
    	 */
    	r1_bio->bios[mirror] = NULL;
    	to_put = bio;
    	if (!uptodate) {
    		md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
    		/* an I/O failed, we can't clear the bitmap */
    		set_bit(R1BIO_Degraded, &r1_bio->state);
    	} else
    		/*
    		 * Set R1BIO_Uptodate in our master bio, so that we
    		 * will return a good error code for to the higher
    		 * levels even if IO on some other mirrored buffer
    		 * fails.
    		 *
    		 * The 'master' represents the composite IO operation
    		 * to user-side. So if something waits for IO, then it
    		 * will wait for the 'master' bio.
    		 */
    		set_bit(R1BIO_Uptodate, &r1_bio->state);
    
    	update_head_pos(mirror, r1_bio);
    
    	if (behind) {
    		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
    			atomic_dec(&r1_bio->behind_remaining);
    
    		/*
    		 * In behind mode, we ACK the master bio once the I/O
    		 * has safely reached all non-writemostly
    		 * disks. Setting the Returned bit ensures that this
    		 * gets done only once -- we don't ever want to return
    		 * -EIO here, instead we'll wait
    		 */
    		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
    		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
    			/* Maybe we can return now */
    			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
    				struct bio *mbio = r1_bio->master_bio;
    				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
    				       (unsigned long long) mbio->bi_sector,
    				       (unsigned long long) mbio->bi_sector +
    				       (mbio->bi_size >> 9) - 1);
    				call_bio_endio(r1_bio);
    			}
    		}
    	}
    	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
    
    	/*
    	 * Let's see if all mirrored write operations have finished
    	 * already.
    	 */
    	r1_bio_write_done(r1_bio);
    
    	if (to_put)
    		bio_put(to_put);
    }
    
    
    /*
     * This routine returns the disk from which the requested read should
     * be done. There is a per-array 'next expected sequential IO' sector
     * number - if this matches on the next IO then we use the last disk.
     * There is also a per-disk 'last know head position' sector that is
     * maintained from IRQ contexts, both the normal and the resync IO
     * completion handlers update this position correctly. If there is no
     * perfect sequential match then we pick the disk whose head is closest.
     *
     * If there are 2 mirrors in the same 2 devices, performance degrades
     * because position is mirror, not device based.
     *
     * The rdev for the device selected will have nr_pending incremented.
     */
    static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
    {
    	const sector_t this_sector = r1_bio->sector;
    	int sectors;
    	int best_good_sectors;
    	int start_disk;
    	int best_disk;
    	int i;
    	sector_t best_dist;
    	mdk_rdev_t *rdev;
    	int choose_first;
    
    	rcu_read_lock();
    	/*
    	 * Check if we can balance. We can balance on the whole
    	 * device if no resync is going on, or below the resync window.
    	 * We take the first readable disk when above the resync window.
    	 */
     retry:
    	sectors = r1_bio->sectors;
    	best_disk = -1;
    	best_dist = MaxSector;
    	best_good_sectors = 0;
    
    	if (conf->mddev->recovery_cp < MaxSector &&
    	    (this_sector + sectors >= conf->next_resync)) {
    		choose_first = 1;
    		start_disk = 0;
    	} else {
    		choose_first = 0;
    		start_disk = conf->last_used;
    	}
    
    	for (i = 0 ; i < conf->raid_disks ; i++) {
    		sector_t dist;
    		sector_t first_bad;
    		int bad_sectors;
    
    		int disk = start_disk + i;
    		if (disk >= conf->raid_disks)
    			disk -= conf->raid_disks;
    
    		rdev = rcu_dereference(conf->mirrors[disk].rdev);
    		if (r1_bio->bios[disk] == IO_BLOCKED
    		    || rdev == NULL
    		    || test_bit(Faulty, &rdev->flags))
    			continue;
    		if (!test_bit(In_sync, &rdev->flags) &&
    		    rdev->recovery_offset < this_sector + sectors)
    			continue;
    		if (test_bit(WriteMostly, &rdev->flags)) {
    			/* Don't balance among write-mostly, just
    			 * use the first as a last resort */
    			if (best_disk < 0)
    				best_disk = disk;
    			continue;
    		}
    		/* This is a reasonable device to use.  It might
    		 * even be best.
    		 */
    		if (is_badblock(rdev, this_sector, sectors,
    				&first_bad, &bad_sectors)) {
    			if (best_dist < MaxSector)
    				/* already have a better device */
    				continue;
    			if (first_bad <= this_sector) {
    				/* cannot read here. If this is the 'primary'
    				 * device, then we must not read beyond
    				 * bad_sectors from another device..
    				 */
    				bad_sectors -= (this_sector - first_bad);
    				if (choose_first && sectors > bad_sectors)
    					sectors = bad_sectors;
    				if (best_good_sectors > sectors)
    					best_good_sectors = sectors;
    
    			} else {
    				sector_t good_sectors = first_bad - this_sector;
    				if (good_sectors > best_good_sectors) {
    					best_good_sectors = good_sectors;
    					best_disk = disk;
    				}
    				if (choose_first)
    					break;
    			}
    			continue;
    		} else
    			best_good_sectors = sectors;
    
    		dist = abs(this_sector - conf->mirrors[disk].head_position);
    		if (choose_first
    		    /* Don't change to another disk for sequential reads */
    		    || conf->next_seq_sect == this_sector
    		    || dist == 0
    		    /* If device is idle, use it */
    		    || atomic_read(&rdev->nr_pending) == 0) {
    			best_disk = disk;
    			break;
    		}
    		if (dist < best_dist) {
    			best_dist = dist;
    			best_disk = disk;
    		}
    	}
    
    	if (best_disk >= 0) {
    		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
    		if (!rdev)
    			goto retry;
    		atomic_inc(&rdev->nr_pending);
    		if (test_bit(Faulty, &rdev->flags)) {
    			/* cannot risk returning a device that failed
    			 * before we inc'ed nr_pending
    			 */
    			rdev_dec_pending(rdev, conf->mddev);
    			goto retry;
    		}
    		sectors = best_good_sectors;
    		conf->next_seq_sect = this_sector + sectors;
    		conf->last_used = best_disk;
    	}
    	rcu_read_unlock();
    	*max_sectors = sectors;
    
    	return best_disk;
    }
    
    int md_raid1_congested(mddev_t *mddev, int bits)
    {
    	conf_t *conf = mddev->private;
    	int i, ret = 0;
    
    	rcu_read_lock();
    	for (i = 0; i < mddev->raid_disks; i++) {
    		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
    		if (rdev && !test_bit(Faulty, &rdev->flags)) {
    			struct request_queue *q = bdev_get_queue(rdev->bdev);
    
    			BUG_ON(!q);
    
    			/* Note the '|| 1' - when read_balance prefers
    			 * non-congested targets, it can be removed
    			 */
    			if ((bits & (1<<BDI_async_congested)) || 1)
    				ret |= bdi_congested(&q->backing_dev_info, bits);
    			else
    				ret &= bdi_congested(&q->backing_dev_info, bits);
    		}
    	}
    	rcu_read_unlock();
    	return ret;
    }
    EXPORT_SYMBOL_GPL(md_raid1_congested);
    
    static int raid1_congested(void *data, int bits)
    {
    	mddev_t *mddev = data;
    
    	return mddev_congested(mddev, bits) ||
    		md_raid1_congested(mddev, bits);
    }
    
    static void flush_pending_writes(conf_t *conf)
    {
    	/* Any writes that have been queued but are awaiting
    	 * bitmap updates get flushed here.
    	 */
    	spin_lock_irq(&conf->device_lock);
    
    	if (conf->pending_bio_list.head) {
    		struct bio *bio;
    		bio = bio_list_get(&conf->pending_bio_list);
    		spin_unlock_irq(&conf->device_lock);
    		/* flush any pending bitmap writes to
    		 * disk before proceeding w/ I/O */
    		bitmap_unplug(conf->mddev->bitmap);
    
    		while (bio) { /* submit pending writes */
    			struct bio *next = bio->bi_next;
    			bio->bi_next = NULL;
    			generic_make_request(bio);
    			bio = next;
    		}
    	} else
    		spin_unlock_irq(&conf->device_lock);
    }
    
    /* Barriers....
     * Sometimes we need to suspend IO while we do something else,
     * either some resync/recovery, or reconfigure the array.
     * To do this we raise a 'barrier'.
     * The 'barrier' is a counter that can be raised multiple times
     * to count how many activities are happening which preclude
     * normal IO.
     * We can only raise the barrier if there is no pending IO.
     * i.e. if nr_pending == 0.
     * We choose only to raise the barrier if no-one is waiting for the
     * barrier to go down.  This means that as soon as an IO request
     * is ready, no other operations which require a barrier will start
     * until the IO request has had a chance.
     *
     * So: regular IO calls 'wait_barrier'.  When that returns there
     *    is no backgroup IO happening,  It must arrange to call
     *    allow_barrier when it has finished its IO.
     * backgroup IO calls must call raise_barrier.  Once that returns
     *    there is no normal IO happeing.  It must arrange to call
     *    lower_barrier when the particular background IO completes.
     */
    #define RESYNC_DEPTH 32
    
    static void raise_barrier(conf_t *conf)
    {
    	spin_lock_irq(&conf->resync_lock);
    
    	/* Wait until no block IO is waiting */
    	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
    			    conf->resync_lock, );
    
    	/* block any new IO from starting */
    	conf->barrier++;
    
    	/* Now wait for all pending IO to complete */
    	wait_event_lock_irq(conf->wait_barrier,
    			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
    			    conf->resync_lock, );
    
    	spin_unlock_irq(&conf->resync_lock);
    }
    
    static void lower_barrier(conf_t *conf)
    {
    	unsigned long flags;
    	BUG_ON(conf->barrier <= 0);
    	spin_lock_irqsave(&conf->resync_lock, flags);
    	conf->barrier--;
    	spin_unlock_irqrestore(&conf->resync_lock, flags);
    	wake_up(&conf->wait_barrier);
    }
    
    static void wait_barrier(conf_t *conf)
    {
    	spin_lock_irq(&conf->resync_lock);
    	if (conf->barrier) {
    		conf->nr_waiting++;
    		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
    				    conf->resync_lock,
    				    );
    		conf->nr_waiting--;
    	}
    	conf->nr_pending++;
    	spin_unlock_irq(&conf->resync_lock);
    }
    
    static void allow_barrier(conf_t *conf)
    {
    	unsigned long flags;
    	spin_lock_irqsave(&conf->resync_lock, flags);
    	conf->nr_pending--;
    	spin_unlock_irqrestore(&conf->resync_lock, flags);
    	wake_up(&conf->wait_barrier);
    }
    
    static void freeze_array(conf_t *conf)
    {
    	/* stop syncio and normal IO and wait for everything to
    	 * go quite.
    	 * We increment barrier and nr_waiting, and then
    	 * wait until nr_pending match nr_queued+1
    	 * This is called in the context of one normal IO request
    	 * that has failed. Thus any sync request that might be pending
    	 * will be blocked by nr_pending, and we need to wait for
    	 * pending IO requests to complete or be queued for re-try.
    	 * Thus the number queued (nr_queued) plus this request (1)
    	 * must match the number of pending IOs (nr_pending) before
    	 * we continue.
    	 */
    	spin_lock_irq(&conf->resync_lock);
    	conf->barrier++;
    	conf->nr_waiting++;
    	wait_event_lock_irq(conf->wait_barrier,
    			    conf->nr_pending == conf->nr_queued+1,
    			    conf->resync_lock,
    			    flush_pending_writes(conf));
    	spin_unlock_irq(&conf->resync_lock);
    }
    static void unfreeze_array(conf_t *conf)
    {
    	/* reverse the effect of the freeze */
    	spin_lock_irq(&conf->resync_lock);
    	conf->barrier--;
    	conf->nr_waiting--;
    	wake_up(&conf->wait_barrier);
    	spin_unlock_irq(&conf->resync_lock);
    }
    
    
    /* duplicate the data pages for behind I/O 
     */
    static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
    {
    	int i;
    	struct bio_vec *bvec;
    	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page*),
    					GFP_NOIO);
    	if (unlikely(!pages))
    		return;
    
    	bio_for_each_segment(bvec, bio, i) {
    		pages[i] = alloc_page(GFP_NOIO);
    		if (unlikely(!pages[i]))
    			goto do_sync_io;
    		memcpy(kmap(pages[i]) + bvec->bv_offset,
    			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
    		kunmap(pages[i]);
    		kunmap(bvec->bv_page);
    	}
    	r1_bio->behind_pages = pages;
    	r1_bio->behind_page_count = bio->bi_vcnt;
    	set_bit(R1BIO_BehindIO, &r1_bio->state);
    	return;
    
    do_sync_io:
    	for (i = 0; i < bio->bi_vcnt; i++)
    		if (pages[i])
    			put_page(pages[i]);
    	kfree(pages);
    	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
    }
    
    static int make_request(mddev_t *mddev, struct bio * bio)
    {
    	conf_t *conf = mddev->private;
    	mirror_info_t *mirror;
    	r1bio_t *r1_bio;
    	struct bio *read_bio;
    	int i, disks;
    	struct bitmap *bitmap;
    	unsigned long flags;
    	const int rw = bio_data_dir(bio);
    	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
    	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
    	mdk_rdev_t *blocked_rdev;
    	int plugged;
    	int first_clone;
    	int sectors_handled;
    	int max_sectors;
    
    	/*
    	 * Register the new request and wait if the reconstruction
    	 * thread has put up a bar for new requests.
    	 * Continue immediately if no resync is active currently.
    	 */
    
    	md_write_start(mddev, bio); /* wait on superblock update early */
    
    	if (bio_data_dir(bio) == WRITE &&
    	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
    	    bio->bi_sector < mddev->suspend_hi) {
    		/* As the suspend_* range is controlled by
    		 * userspace, we want an interruptible
    		 * wait.
    		 */
    		DEFINE_WAIT(w);
    		for (;;) {
    			flush_signals(current);
    			prepare_to_wait(&conf->wait_barrier,
    					&w, TASK_INTERRUPTIBLE);
    			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
    			    bio->bi_sector >= mddev->suspend_hi)
    				break;
    			schedule();
    		}
    		finish_wait(&conf->wait_barrier, &w);
    	}
    
    	wait_barrier(conf);
    
    	bitmap = mddev->bitmap;
    
    	/*
    	 * make_request() can abort the operation when READA is being
    	 * used and no empty request is available.
    	 *
    	 */
    	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
    
    	r1_bio->master_bio = bio;
    	r1_bio->sectors = bio->bi_size >> 9;
    	r1_bio->state = 0;
    	r1_bio->mddev = mddev;
    	r1_bio->sector = bio->bi_sector;
    
    	/* We might need to issue multiple reads to different
    	 * devices if there are bad blocks around, so we keep
    	 * track of the number of reads in bio->bi_phys_segments.
    	 * If this is 0, there is only one r1_bio and no locking
    	 * will be needed when requests complete.  If it is
    	 * non-zero, then it is the number of not-completed requests.
    	 */
    	bio->bi_phys_segments = 0;
    	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
    
    	if (rw == READ) {
    		/*
    		 * read balancing logic:
    		 */
    		int rdisk;
    
    read_again:
    		rdisk = read_balance(conf, r1_bio, &max_sectors);
    
    		if (rdisk < 0) {
    			/* couldn't find anywhere to read from */
    			raid_end_bio_io(r1_bio);
    			return 0;
    		}
    		mirror = conf->mirrors + rdisk;
    
    		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
    		    bitmap) {
    			/* Reading from a write-mostly device must
    			 * take care not to over-take any writes
    			 * that are 'behind'
    			 */
    			wait_event(bitmap->behind_wait,
    				   atomic_read(&bitmap->behind_writes) == 0);
    		}
    		r1_bio->read_disk = rdisk;
    
    		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
    		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
    			    max_sectors);
    
    		r1_bio->bios[rdisk] = read_bio;
    
    		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
    		read_bio->bi_bdev = mirror->rdev->bdev;
    		read_bio->bi_end_io = raid1_end_read_request;
    		read_bio->bi_rw = READ | do_sync;
    		read_bio->bi_private = r1_bio;
    
    		if (max_sectors < r1_bio->sectors) {
    			/* could not read all from this device, so we will
    			 * need another r1_bio.
    			 */
    
    			sectors_handled = (r1_bio->sector + max_sectors
    					   - bio->bi_sector);
    			r1_bio->sectors = max_sectors;
    			spin_lock_irq(&conf->device_lock);
    			if (bio->bi_phys_segments == 0)
    				bio->bi_phys_segments = 2;
    			else
    				bio->bi_phys_segments++;
    			spin_unlock_irq(&conf->device_lock);
    			/* Cannot call generic_make_request directly
    			 * as that will be queued in __make_request
    			 * and subsequent mempool_alloc might block waiting
    			 * for it.  So hand bio over to raid1d.
    			 */
    			reschedule_retry(r1_bio);
    
    			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
    
    			r1_bio->master_bio = bio;
    			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
    			r1_bio->state = 0;
    			r1_bio->mddev = mddev;
    			r1_bio->sector = bio->bi_sector + sectors_handled;
    			goto read_again;
    		} else
    			generic_make_request(read_bio);
    		return 0;
    	}
    
    	/*
    	 * WRITE:
    	 */
    	/* first select target devices under rcu_lock and
    	 * inc refcount on their rdev.  Record them by setting
    	 * bios[x] to bio
    	 * If there are known/acknowledged bad blocks on any device on
    	 * which we have seen a write error, we want to avoid writing those
    	 * blocks.
    	 * This potentially requires several writes to write around
    	 * the bad blocks.  Each set of writes gets it's own r1bio
    	 * with a set of bios attached.
    	 */
    	plugged = mddev_check_plugged(mddev);
    
    	disks = conf->raid_disks;
     retry_write:
    	blocked_rdev = NULL;
    	rcu_read_lock();
    	max_sectors = r1_bio->sectors;
    	for (i = 0;  i < disks; i++) {
    		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
    		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
    			atomic_inc(&rdev->nr_pending);
    			blocked_rdev = rdev;
    			break;
    		}
    		r1_bio->bios[i] = NULL;
    		if (!rdev || test_bit(Faulty, &rdev->flags)) {
    			set_bit(R1BIO_Degraded, &r1_bio->state);
    			continue;
    		}
    
    		atomic_inc(&rdev->nr_pending);
    		if (test_bit(WriteErrorSeen, &rdev->flags)) {
    			sector_t first_bad;
    			int bad_sectors;
    			int is_bad;
    
    			is_bad = is_badblock(rdev, r1_bio->sector,
    					     max_sectors,
    					     &first_bad, &bad_sectors);
    			if (is_bad < 0) {
    				/* mustn't write here until the bad block is
    				 * acknowledged*/
    				set_bit(BlockedBadBlocks, &rdev->flags);
    				blocked_rdev = rdev;
    				break;
    			}
    			if (is_bad && first_bad <= r1_bio->sector) {
    				/* Cannot write here at all */
    				bad_sectors -= (r1_bio->sector - first_bad);
    				if (bad_sectors < max_sectors)
    					/* mustn't write more than bad_sectors
    					 * to other devices yet
    					 */
    					max_sectors = bad_sectors;
    				rdev_dec_pending(rdev, mddev);
    				/* We don't set R1BIO_Degraded as that
    				 * only applies if the disk is
    				 * missing, so it might be re-added,
    				 * and we want to know to recover this
    				 * chunk.
    				 * In this case the device is here,
    				 * and the fact that this chunk is not
    				 * in-sync is recorded in the bad
    				 * block log
    				 */
    				continue;
    			}
    			if (is_bad) {
    				int good_sectors = first_bad - r1_bio->sector;
    				if (good_sectors < max_sectors)
    					max_sectors = good_sectors;
    			}
    		}
    		r1_bio->bios[i] = bio;
    	}
    	rcu_read_unlock();
    
    	if (unlikely(blocked_rdev)) {
    		/* Wait for this device to become unblocked */
    		int j;
    
    		for (j = 0; j < i; j++)
    			if (r1_bio->bios[j])
    				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
    		r1_bio->state = 0;
    		allow_barrier(conf);
    		md_wait_for_blocked_rdev(blocked_rdev, mddev);
    		wait_barrier(conf);
    		goto retry_write;
    	}
    
    	if (max_sectors < r1_bio->sectors) {
    		/* We are splitting this write into multiple parts, so
    		 * we need to prepare for allocating another r1_bio.
    		 */
    		r1_bio->sectors = max_sectors;
    		spin_lock_irq(&conf->device_lock);
    		if (bio->bi_phys_segments == 0)
    			bio->bi_phys_segments = 2;
    		else
    			bio->bi_phys_segments++;
    		spin_unlock_irq(&conf->device_lock);
    	}
    	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
    
    	atomic_set(&r1_bio->remaining, 1);
    	atomic_set(&r1_bio->behind_remaining, 0);
    
    	first_clone = 1;
    	for (i = 0; i < disks; i++) {
    		struct bio *mbio;
    		if (!r1_bio->bios[i])
    			continue;
    
    		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
    		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
    
    		if (first_clone) {
    			/* do behind I/O ?
    			 * Not if there are too many, or cannot
    			 * allocate memory, or a reader on WriteMostly
    			 * is waiting for behind writes to flush */
    			if (bitmap &&
    			    (atomic_read(&bitmap->behind_writes)
    			     < mddev->bitmap_info.max_write_behind) &&
    			    !waitqueue_active(&bitmap->behind_wait))
    				alloc_behind_pages(mbio, r1_bio);
    
    			bitmap_startwrite(bitmap, r1_bio->sector,
    					  r1_bio->sectors,
    					  test_bit(R1BIO_BehindIO,
    						   &r1_bio->state));
    			first_clone = 0;
    		}
    		if (r1_bio->behind_pages) {
    			struct bio_vec *bvec;
    			int j;
    
    			/* Yes, I really want the '__' version so that
    			 * we clear any unused pointer in the io_vec, rather
    			 * than leave them unchanged.  This is important
    			 * because when we come to free the pages, we won't
    			 * know the original bi_idx, so we just free
    			 * them all
    			 */
    			__bio_for_each_segment(bvec, mbio, j, 0)
    				bvec->bv_page = r1_bio->behind_pages[j];
    			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
    				atomic_inc(&r1_bio->behind_remaining);
    		}
    
    		r1_bio->bios[i] = mbio;
    
    		mbio->bi_sector	= (r1_bio->sector +
    				   conf->mirrors[i].rdev->data_offset);
    		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
    		mbio->bi_end_io	= raid1_end_write_request;
    		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
    		mbio->bi_private = r1_bio;
    
    		atomic_inc(&r1_bio->remaining);
    		spin_lock_irqsave(&conf->device_lock, flags);
    		bio_list_add(&conf->pending_bio_list, mbio);
    		spin_unlock_irqrestore(&conf->device_lock, flags);
    	}
    	r1_bio_write_done(r1_bio);
    
    	/* In case raid1d snuck in to freeze_array */
    	wake_up(&conf->wait_barrier);
    
    	if (sectors_handled < (bio->bi_size >> 9)) {
    		/* We need another r1_bio.  It has already been counted
    		 * in bio->bi_phys_segments
    		 */
    		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
    		r1_bio->master_bio = bio;
    		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
    		r1_bio->state = 0;
    		r1_bio->mddev = mddev;
    		r1_bio->sector = bio->bi_sector + sectors_handled;
    		goto retry_write;
    	}
    
    	if (do_sync || !bitmap || !plugged)
    		md_wakeup_thread(mddev->thread);
    
    	return 0;
    }
    
    static void status(struct seq_file *seq, mddev_t *mddev)
    {
    	conf_t *conf = mddev->private;
    	int i;
    
    	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
    		   conf->raid_disks - mddev->degraded);
    	rcu_read_lock();
    	for (i = 0; i < conf->raid_disks; i++) {
    		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
    		seq_printf(seq, "%s",
    			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
    	}
    	rcu_read_unlock();
    	seq_printf(seq, "]");
    }
    
    
    static void error(mddev_t *mddev, mdk_rdev_t *rdev)
    {
    	char b[BDEVNAME_SIZE];
    	conf_t *conf = mddev->private;
    
    	/*
    	 * If it is not operational, then we have already marked it as dead
    	 * else if it is the last working disks, ignore the error, let the
    	 * next level up know.
    	 * else mark the drive as failed
    	 */
    	if (test_bit(In_sync, &rdev->flags)
    	    && (conf->raid_disks - mddev->degraded) == 1) {
    		/*
    		 * Don't fail the drive, act as though we were just a
    		 * normal single drive.
    		 * However don't try a recovery from this drive as
    		 * it is very likely to fail.
    		 */
    		conf->recovery_disabled = mddev->recovery_disabled;
    		return;
    	}
    	set_bit(Blocked, &rdev->flags);
    	if (test_and_clear_bit(In_sync, &rdev->flags)) {
    		unsigned long flags;
    		spin_lock_irqsave(&conf->device_lock, flags);
    		mddev->degraded++;
    		set_bit(Faulty, &rdev->flags);
    		spin_unlock_irqrestore(&conf->device_lock, flags);
    		/*
    		 * if recovery is running, make sure it aborts.
    		 */
    		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
    	} else
    		set_bit(Faulty, &rdev->flags);
    	set_bit(MD_CHANGE_DEVS, &mddev->flags);
    	printk(KERN_ALERT
    	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
    	       "md/raid1:%s: Operation continuing on %d devices.\n",
    	       mdname(mddev), bdevname(rdev->bdev, b),
    	       mdname(mddev), conf->raid_disks - mddev->degraded);
    }
    
    static void print_conf(conf_t *conf)
    {
    	int i;
    
    	printk(KERN_DEBUG "RAID1 conf printout:\n");
    	if (!conf) {
    		printk(KERN_DEBUG "(!conf)\n");
    		return;
    	}
    	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
    		conf->raid_disks);
    
    	rcu_read_lock();
    	for (i = 0; i < conf->raid_disks; i++) {
    		char b[BDEVNAME_SIZE];
    		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
    		if (rdev)
    			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
    			       i, !test_bit(In_sync, &rdev->flags),
    			       !test_bit(Faulty, &rdev->flags),
    			       bdevname(rdev->bdev,b));
    	}
    	rcu_read_unlock();
    }
    
    static void close_sync(conf_t *conf)
    {
    	wait_barrier(conf);
    	allow_barrier(conf);
    
    	mempool_destroy(conf->r1buf_pool);
    	conf->r1buf_pool = NULL;
    }
    
    static int raid1_spare_active(mddev_t *mddev)
    {
    	int i;
    	conf_t *conf = mddev->private;
    	int count = 0;
    	unsigned long flags;
    
    	/*
    	 * Find all failed disks within the RAID1 configuration 
    	 * and mark them readable.
    	 * Called under mddev lock, so rcu protection not needed.
    	 */
    	for (i = 0; i < conf->raid_disks; i++) {
    		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
    		if (rdev
    		    && !test_bit(Faulty, &rdev->flags)
    		    && !test_and_set_bit(In_sync, &rdev->flags)) {
    			count++;
    			sysfs_notify_dirent_safe(rdev->sysfs_state);
    		}
    	}
    	spin_lock_irqsave(&conf->device_lock, flags);
    	mddev->degraded -= count;
    	spin_unlock_irqrestore(&conf->device_lock, flags);
    
    	print_conf(conf);
    	return count;
    }
    
    
    static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
    {
    	conf_t *conf = mddev->private;
    	int err = -EEXIST;
    	int mirror = 0;
    	mirror_info_t *p;
    	int first = 0;
    	int last = mddev->raid_disks - 1;
    
    	if (mddev->recovery_disabled == conf->recovery_disabled)
    		return -EBUSY;
    
    	if (rdev->raid_disk >= 0)
    		first = last = rdev->raid_disk;
    
    	for (mirror = first; mirror <= last; mirror++)
    		if ( !(p=conf->mirrors+mirror)->rdev) {
    
    			disk_stack_limits(mddev->gendisk, rdev->bdev,
    					  rdev->data_offset << 9);
    			/* as we don't honour merge_bvec_fn, we must
    			 * never risk violating it, so limit
    			 * ->max_segments to one lying with a single
    			 * page, as a one page request is never in
    			 * violation.
    			 */
    			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
    				blk_queue_max_segments(mddev->queue, 1);
    				blk_queue_segment_boundary(mddev->queue,
    							   PAGE_CACHE_SIZE - 1);
    			}
    
    			p->head_position = 0;
    			rdev->raid_disk = mirror;
    			err = 0;
    			/* As all devices are equivalent, we don't need a full recovery
    			 * if this was recently any drive of the array
    			 */
    			if (rdev->saved_raid_disk < 0)
    				conf->fullsync = 1;
    			rcu_assign_pointer(p->rdev, rdev);
    			break;
    		}
    	md_integrity_add_rdev(rdev, mddev);
    	print_conf(conf);
    	return err;
    }
    
    static int raid1_remove_disk(mddev_t *mddev, int number)
    {
    	conf_t *conf = mddev->private;
    	int err = 0;
    	mdk_rdev_t *rdev;
    	mirror_info_t *p = conf->mirrors+ number;
    
    	print_conf(conf);
    	rdev = p->rdev;
    	if (rdev) {
    		if (test_bit(In_sync, &rdev->flags) ||
    		    atomic_read(&rdev->nr_pending)) {
    			err = -EBUSY;
    			goto abort;
    		}
    		/* Only remove non-faulty devices if recovery
    		 * is not possible.
    		 */
    		if (!test_bit(Faulty, &rdev->flags) &&
    		    mddev->recovery_disabled != conf->recovery_disabled &&
    		    mddev->degraded < conf->raid_disks) {
    			err = -EBUSY;
    			goto abort;
    		}
    		p->rdev = NULL;
    		synchronize_rcu();
    		if (atomic_read(&rdev->nr_pending)) {
    			/* lost the race, try later */
    			err = -EBUSY;
    			p->rdev = rdev;
    			goto abort;
    		}
    		err = md_integrity_register(mddev);
    	}
    abort:
    
    	print_conf(conf);
    	return err;
    }
    
    
    static void end_sync_read(struct bio *bio, int error)
    {
    	r1bio_t *r1_bio = bio->bi_private;
    	int i;
    
    	for (i=r1_bio->mddev->raid_disks; i--; )
    		if (r1_bio->bios[i] == bio)
    			break;
    	BUG_ON(i < 0);
    	update_head_pos(i, r1_bio);
    	/*
    	 * we have read a block, now it needs to be re-written,
    	 * or re-read if the read failed.
    	 * We don't do much here, just schedule handling by raid1d
    	 */
    	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
    		set_bit(R1BIO_Uptodate, &r1_bio->state);
    
    	if (atomic_dec_and_test(&r1_bio->remaining))
    		reschedule_retry(r1_bio);
    }
    
    static void end_sync_write(struct bio *bio, int error)
    {
    	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
    	r1bio_t *r1_bio = bio->bi_private;
    	mddev_t *mddev = r1_bio->mddev;
    	conf_t *conf = mddev->private;
    	int i;
    	int mirror=0;
    
    	for (i = 0; i < conf->raid_disks; i++)
    		if (r1_bio->bios[i] == bio) {
    			mirror = i;
    			break;
    		}
    	if (!uptodate) {
    		sector_t sync_blocks = 0;
    		sector_t s = r1_bio->sector;
    		long sectors_to_go = r1_bio->sectors;
    		/* make sure these bits doesn't get cleared. */
    		do {
    			bitmap_end_sync(mddev->bitmap, s,
    					&sync_blocks, 1);
    			s += sync_blocks;
    			sectors_to_go -= sync_blocks;
    		} while (sectors_to_go > 0);
    		md_error(mddev, conf->mirrors[mirror].rdev);
    	}
    
    	update_head_pos(mirror, r1_bio);
    
    	if (atomic_dec_and_test(&r1_bio->remaining)) {
    		sector_t s = r1_bio->sectors;
    		put_buf(r1_bio);
    		md_done_sync(mddev, s, uptodate);
    	}
    }
    
    static int fix_sync_read_error(r1bio_t *r1_bio)
    {
    	/* Try some synchronous reads of other devices to get
    	 * good data, much like with normal read errors.  Only
    	 * read into the pages we already have so we don't
    	 * need to re-issue the read request.
    	 * We don't need to freeze the array, because being in an
    	 * active sync request, there is no normal IO, and
    	 * no overlapping syncs.
    	 * We don't need to check is_badblock() again as we
    	 * made sure that anything with a bad block in range
    	 * will have bi_end_io clear.
    	 */
    	mddev_t *mddev = r1_bio->mddev;
    	conf_t *conf = mddev->private;
    	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
    	sector_t sect = r1_bio->sector;
    	int sectors = r1_bio->sectors;
    	int idx = 0;
    
    	while(sectors) {
    		int s = sectors;
    		int d = r1_bio->read_disk;
    		int success = 0;
    		mdk_rdev_t *rdev;
    		int start;
    
    		if (s > (PAGE_SIZE>>9))
    			s = PAGE_SIZE >> 9;
    		do {
    			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
    				/* No rcu protection needed here devices
    				 * can only be removed when no resync is
    				 * active, and resync is currently active
    				 */
    				rdev = conf->mirrors[d].rdev;
    				if (sync_page_io(rdev, sect, s<<9,
    						 bio->bi_io_vec[idx].bv_page,
    						 READ, false)) {
    					success = 1;
    					break;
    				}
    			}
    			d++;
    			if (d == conf->raid_disks)
    				d = 0;
    		} while (!success && d != r1_bio->read_disk);
    
    		if (!success) {
    			char b[BDEVNAME_SIZE];
    			/* Cannot read from anywhere, array is toast */
    			md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
    			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
    			       " for block %llu\n",
    			       mdname(mddev),
    			       bdevname(bio->bi_bdev, b),
    			       (unsigned long long)r1_bio->sector);
    			md_done_sync(mddev, r1_bio->sectors, 0);
    			put_buf(r1_bio);
    			return 0;
    		}
    
    		start = d;
    		/* write it back and re-read */
    		while (d != r1_bio->read_disk) {
    			if (d == 0)
    				d = conf->raid_disks;
    			d--;
    			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
    				continue;
    			rdev = conf->mirrors[d].rdev;
    			if (sync_page_io(rdev, sect, s<<9,
    					 bio->bi_io_vec[idx].bv_page,
    					 WRITE, false) == 0) {
    				r1_bio->bios[d]->bi_end_io = NULL;
    				rdev_dec_pending(rdev, mddev);
    				md_error(mddev, rdev);
    			}
    		}
    		d = start;
    		while (d != r1_bio->read_disk) {
    			if (d == 0)
    				d = conf->raid_disks;
    			d--;
    			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
    				continue;
    			rdev = conf->mirrors[d].rdev;
    			if (sync_page_io(rdev, sect, s<<9,
    					 bio->bi_io_vec[idx].bv_page,
    					 READ, false) == 0)
    				md_error(mddev, rdev);
    			else
    				atomic_add(s, &rdev->corrected_errors);
    		}
    		sectors -= s;
    		sect += s;
    		idx ++;
    	}
    	set_bit(R1BIO_Uptodate, &r1_bio->state);
    	set_bit(BIO_UPTODATE, &bio->bi_flags);
    	return 1;
    }
    
    static int process_checks(r1bio_t *r1_bio)
    {
    	/* We have read all readable devices.  If we haven't
    	 * got the block, then there is no hope left.
    	 * If we have, then we want to do a comparison
    	 * and skip the write if everything is the same.
    	 * If any blocks failed to read, then we need to
    	 * attempt an over-write
    	 */
    	mddev_t *mddev = r1_bio->mddev;
    	conf_t *conf = mddev->private;
    	int primary;
    	int i;
    
    	for (primary = 0; primary < conf->raid_disks; primary++)
    		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
    		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
    			r1_bio->bios[primary]->bi_end_io = NULL;
    			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
    			break;
    		}
    	r1_bio->read_disk = primary;
    	for (i = 0; i < conf->raid_disks; i++) {
    		int j;
    		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
    		struct bio *pbio = r1_bio->bios[primary];
    		struct bio *sbio = r1_bio->bios[i];
    		int size;
    
    		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
    			continue;
    
    		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
    			for (j = vcnt; j-- ; ) {
    				struct page *p, *s;
    				p = pbio->bi_io_vec[j].bv_page;
    				s = sbio->bi_io_vec[j].bv_page;
    				if (memcmp(page_address(p),
    					   page_address(s),
    					   PAGE_SIZE))
    					break;
    			}
    		} else
    			j = 0;
    		if (j >= 0)
    			mddev->resync_mismatches += r1_bio->sectors;
    		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
    			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
    			/* No need to write to this device. */
    			sbio->bi_end_io = NULL;
    			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
    			continue;
    		}
    		/* fixup the bio for reuse */
    		sbio->bi_vcnt = vcnt;
    		sbio->bi_size = r1_bio->sectors << 9;
    		sbio->bi_idx = 0;
    		sbio->bi_phys_segments = 0;
    		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
    		sbio->bi_flags |= 1 << BIO_UPTODATE;
    		sbio->bi_next = NULL;
    		sbio->bi_sector = r1_bio->sector +
    			conf->mirrors[i].rdev->data_offset;
    		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
    		size = sbio->bi_size;
    		for (j = 0; j < vcnt ; j++) {
    			struct bio_vec *bi;
    			bi = &sbio->bi_io_vec[j];
    			bi->bv_offset = 0;
    			if (size > PAGE_SIZE)
    				bi->bv_len = PAGE_SIZE;
    			else
    				bi->bv_len = size;
    			size -= PAGE_SIZE;
    			memcpy(page_address(bi->bv_page),
    			       page_address(pbio->bi_io_vec[j].bv_page),
    			       PAGE_SIZE);
    		}
    	}
    	return 0;
    }
    
    static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
    {
    	conf_t *conf = mddev->private;
    	int i;
    	int disks = conf->raid_disks;
    	struct bio *bio, *wbio;
    
    	bio = r1_bio->bios[r1_bio->read_disk];
    
    	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
    		/* ouch - failed to read all of that. */
    		if (!fix_sync_read_error(r1_bio))
    			return;
    
    	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
    		if (process_checks(r1_bio) < 0)
    			return;
    	/*
    	 * schedule writes
    	 */
    	atomic_set(&r1_bio->remaining, 1);
    	for (i = 0; i < disks ; i++) {
    		wbio = r1_bio->bios[i];
    		if (wbio->bi_end_io == NULL ||
    		    (wbio->bi_end_io == end_sync_read &&
    		     (i == r1_bio->read_disk ||
    		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
    			continue;
    
    		wbio->bi_rw = WRITE;
    		wbio->bi_end_io = end_sync_write;
    		atomic_inc(&r1_bio->remaining);
    		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
    
    		generic_make_request(wbio);
    	}
    
    	if (atomic_dec_and_test(&r1_bio->remaining)) {
    		/* if we're here, all write(s) have completed, so clean up */
    		md_done_sync(mddev, r1_bio->sectors, 1);
    		put_buf(r1_bio);
    	}
    }
    
    /*
     * This is a kernel thread which:
     *
     *	1.	Retries failed read operations on working mirrors.
     *	2.	Updates the raid superblock when problems encounter.
     *	3.	Performs writes following reads for array synchronising.
     */
    
    static void fix_read_error(conf_t *conf, int read_disk,
    			   sector_t sect, int sectors)
    {
    	mddev_t *mddev = conf->mddev;
    	while(sectors) {
    		int s = sectors;
    		int d = read_disk;
    		int success = 0;
    		int start;
    		mdk_rdev_t *rdev;
    
    		if (s > (PAGE_SIZE>>9))
    			s = PAGE_SIZE >> 9;
    
    		do {
    			/* Note: no rcu protection needed here
    			 * as this is synchronous in the raid1d thread
    			 * which is the thread that might remove
    			 * a device.  If raid1d ever becomes multi-threaded....
    			 */
    			sector_t first_bad;
    			int bad_sectors;
    
    			rdev = conf->mirrors[d].rdev;
    			if (rdev &&
    			    test_bit(In_sync, &rdev->flags) &&
    			    is_badblock(rdev, sect, s,
    					&first_bad, &bad_sectors) == 0 &&
    			    sync_page_io(rdev, sect, s<<9,
    					 conf->tmppage, READ, false))
    				success = 1;
    			else {
    				d++;
    				if (d == conf->raid_disks)
    					d = 0;
    			}
    		} while (!success && d != read_disk);
    
    		if (!success) {
    			/* Cannot read from anywhere -- bye bye array */
    			md_error(mddev, conf->mirrors[read_disk].rdev);
    			break;
    		}
    		/* write it back and re-read */
    		start = d;
    		while (d != read_disk) {
    			if (d==0)
    				d = conf->raid_disks;
    			d--;
    			rdev = conf->mirrors[d].rdev;
    			if (rdev &&
    			    test_bit(In_sync, &rdev->flags)) {
    				if (sync_page_io(rdev, sect, s<<9,
    						 conf->tmppage, WRITE, false)
    				    == 0)
    					/* Well, this device is dead */
    					md_error(mddev, rdev);
    			}
    		}
    		d = start;
    		while (d != read_disk) {
    			char b[BDEVNAME_SIZE];
    			if (d==0)
    				d = conf->raid_disks;
    			d--;
    			rdev = conf->mirrors[d].rdev;
    			if (rdev &&
    			    test_bit(In_sync, &rdev->flags)) {
    				if (sync_page_io(rdev, sect, s<<9,
    						 conf->tmppage, READ, false)
    				    == 0)
    					/* Well, this device is dead */
    					md_error(mddev, rdev);
    				else {
    					atomic_add(s, &rdev->corrected_errors);
    					printk(KERN_INFO
    					       "md/raid1:%s: read error corrected "
    					       "(%d sectors at %llu on %s)\n",
    					       mdname(mddev), s,
    					       (unsigned long long)(sect +
    					           rdev->data_offset),
    					       bdevname(rdev->bdev, b));
    				}
    			}
    		}
    		sectors -= s;
    		sect += s;
    	}
    }
    
    static void raid1d(mddev_t *mddev)
    {
    	r1bio_t *r1_bio;
    	struct bio *bio;
    	unsigned long flags;
    	conf_t *conf = mddev->private;
    	struct list_head *head = &conf->retry_list;
    	mdk_rdev_t *rdev;
    	struct blk_plug plug;
    
    	md_check_recovery(mddev);
    
    	blk_start_plug(&plug);
    	for (;;) {
    		char b[BDEVNAME_SIZE];
    
    		if (atomic_read(&mddev->plug_cnt) == 0)
    			flush_pending_writes(conf);
    
    		spin_lock_irqsave(&conf->device_lock, flags);
    		if (list_empty(head)) {
    			spin_unlock_irqrestore(&conf->device_lock, flags);
    			break;
    		}
    		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
    		list_del(head->prev);
    		conf->nr_queued--;
    		spin_unlock_irqrestore(&conf->device_lock, flags);
    
    		mddev = r1_bio->mddev;
    		conf = mddev->private;
    		if (test_bit(R1BIO_IsSync, &r1_bio->state))
    			sync_request_write(mddev, r1_bio);
    		else if (test_bit(R1BIO_ReadError, &r1_bio->state)) {
    			int disk;
    			int max_sectors;
    
    			clear_bit(R1BIO_ReadError, &r1_bio->state);
    			/* we got a read error. Maybe the drive is bad.  Maybe just
    			 * the block and we can fix it.
    			 * We freeze all other IO, and try reading the block from
    			 * other devices.  When we find one, we re-write
    			 * and check it that fixes the read error.
    			 * This is all done synchronously while the array is
    			 * frozen
    			 */
    			if (mddev->ro == 0) {
    				freeze_array(conf);
    				fix_read_error(conf, r1_bio->read_disk,
    					       r1_bio->sector,
    					       r1_bio->sectors);
    				unfreeze_array(conf);
    			} else
    				md_error(mddev,
    					 conf->mirrors[r1_bio->read_disk].rdev);
    
    			bio = r1_bio->bios[r1_bio->read_disk];
    			bdevname(bio->bi_bdev, b);
    read_more:
    			disk = read_balance(conf, r1_bio, &max_sectors);
    			if (disk == -1) {
    				printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
    				       " read error for block %llu\n",
    				       mdname(mddev), b,
    				       (unsigned long long)r1_bio->sector);
    				raid_end_bio_io(r1_bio);
    			} else {
    				const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
    				if (bio) {
    					r1_bio->bios[r1_bio->read_disk] =
    						mddev->ro ? IO_BLOCKED : NULL;
    					bio_put(bio);
    				}
    				r1_bio->read_disk = disk;
    				bio = bio_clone_mddev(r1_bio->master_bio,
    						      GFP_NOIO, mddev);
    				md_trim_bio(bio,
    					    r1_bio->sector - bio->bi_sector,
    					    max_sectors);
    				r1_bio->bios[r1_bio->read_disk] = bio;
    				rdev = conf->mirrors[disk].rdev;
    				printk_ratelimited(
    					KERN_ERR
    					"md/raid1:%s: redirecting sector %llu"
    					" to other mirror: %s\n",
    					mdname(mddev),
    					(unsigned long long)r1_bio->sector,
    					bdevname(rdev->bdev, b));
    				bio->bi_sector = r1_bio->sector + rdev->data_offset;
    				bio->bi_bdev = rdev->bdev;
    				bio->bi_end_io = raid1_end_read_request;
    				bio->bi_rw = READ | do_sync;
    				bio->bi_private = r1_bio;
    				if (max_sectors < r1_bio->sectors) {
    					/* Drat - have to split this up more */
    					struct bio *mbio = r1_bio->master_bio;
    					int sectors_handled =
    						r1_bio->sector + max_sectors
    						- mbio->bi_sector;
    					r1_bio->sectors = max_sectors;
    					spin_lock_irq(&conf->device_lock);
    					if (mbio->bi_phys_segments == 0)
    						mbio->bi_phys_segments = 2;
    					else
    						mbio->bi_phys_segments++;
    					spin_unlock_irq(&conf->device_lock);
    					generic_make_request(bio);
    					bio = NULL;
    
    					r1_bio = mempool_alloc(conf->r1bio_pool,
    							       GFP_NOIO);
    
    					r1_bio->master_bio = mbio;
    					r1_bio->sectors = (mbio->bi_size >> 9)
    						- sectors_handled;
    					r1_bio->state = 0;
    					set_bit(R1BIO_ReadError,
    						&r1_bio->state);
    					r1_bio->mddev = mddev;
    					r1_bio->sector = mbio->bi_sector
    						+ sectors_handled;
    
    					goto read_more;
    				} else
    					generic_make_request(bio);
    			}
    		} else {
    			/* just a partial read to be scheduled from separate
    			 * context
    			 */
    			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
    		}
    		cond_resched();
    		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
    			md_check_recovery(mddev);
    	}
    	blk_finish_plug(&plug);
    }
    
    
    static int init_resync(conf_t *conf)
    {
    	int buffs;
    
    	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
    	BUG_ON(conf->r1buf_pool);
    	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
    					  conf->poolinfo);
    	if (!conf->r1buf_pool)
    		return -ENOMEM;
    	conf->next_resync = 0;
    	return 0;
    }
    
    /*
     * perform a "sync" on one "block"
     *
     * We need to make sure that no normal I/O request - particularly write
     * requests - conflict with active sync requests.
     *
     * This is achieved by tracking pending requests and a 'barrier' concept
     * that can be installed to exclude normal IO requests.
     */
    
    static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
    {
    	conf_t *conf = mddev->private;
    	r1bio_t *r1_bio;
    	struct bio *bio;
    	sector_t max_sector, nr_sectors;
    	int disk = -1;
    	int i;
    	int wonly = -1;
    	int write_targets = 0, read_targets = 0;
    	sector_t sync_blocks;
    	int still_degraded = 0;
    	int good_sectors = RESYNC_SECTORS;
    	int min_bad = 0; /* number of sectors that are bad in all devices */
    
    	if (!conf->r1buf_pool)
    		if (init_resync(conf))
    			return 0;
    
    	max_sector = mddev->dev_sectors;
    	if (sector_nr >= max_sector) {
    		/* If we aborted, we need to abort the
    		 * sync on the 'current' bitmap chunk (there will
    		 * only be one in raid1 resync.
    		 * We can find the current addess in mddev->curr_resync
    		 */
    		if (mddev->curr_resync < max_sector) /* aborted */
    			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
    						&sync_blocks, 1);
    		else /* completed sync */
    			conf->fullsync = 0;
    
    		bitmap_close_sync(mddev->bitmap);
    		close_sync(conf);
    		return 0;
    	}
    
    	if (mddev->bitmap == NULL &&
    	    mddev->recovery_cp == MaxSector &&
    	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
    	    conf->fullsync == 0) {
    		*skipped = 1;
    		return max_sector - sector_nr;
    	}
    	/* before building a request, check if we can skip these blocks..
    	 * This call the bitmap_start_sync doesn't actually record anything
    	 */
    	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
    	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
    		/* We can skip this block, and probably several more */
    		*skipped = 1;
    		return sync_blocks;
    	}
    	/*
    	 * If there is non-resync activity waiting for a turn,
    	 * and resync is going fast enough,
    	 * then let it though before starting on this new sync request.
    	 */
    	if (!go_faster && conf->nr_waiting)
    		msleep_interruptible(1000);
    
    	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
    	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
    	raise_barrier(conf);
    
    	conf->next_resync = sector_nr;
    
    	rcu_read_lock();
    	/*
    	 * If we get a correctably read error during resync or recovery,
    	 * we might want to read from a different device.  So we
    	 * flag all drives that could conceivably be read from for READ,
    	 * and any others (which will be non-In_sync devices) for WRITE.
    	 * If a read fails, we try reading from something else for which READ
    	 * is OK.
    	 */
    
    	r1_bio->mddev = mddev;
    	r1_bio->sector = sector_nr;
    	r1_bio->state = 0;
    	set_bit(R1BIO_IsSync, &r1_bio->state);
    
    	for (i=0; i < conf->raid_disks; i++) {
    		mdk_rdev_t *rdev;
    		bio = r1_bio->bios[i];
    
    		/* take from bio_init */
    		bio->bi_next = NULL;
    		bio->bi_flags &= ~(BIO_POOL_MASK-1);
    		bio->bi_flags |= 1 << BIO_UPTODATE;
    		bio->bi_comp_cpu = -1;
    		bio->bi_rw = READ;
    		bio->bi_vcnt = 0;
    		bio->bi_idx = 0;
    		bio->bi_phys_segments = 0;
    		bio->bi_size = 0;
    		bio->bi_end_io = NULL;
    		bio->bi_private = NULL;
    
    		rdev = rcu_dereference(conf->mirrors[i].rdev);
    		if (rdev == NULL ||
    		    test_bit(Faulty, &rdev->flags)) {
    			still_degraded = 1;
    		} else if (!test_bit(In_sync, &rdev->flags)) {
    			bio->bi_rw = WRITE;
    			bio->bi_end_io = end_sync_write;
    			write_targets ++;
    		} else {
    			/* may need to read from here */
    			sector_t first_bad = MaxSector;
    			int bad_sectors;
    
    			if (is_badblock(rdev, sector_nr, good_sectors,
    					&first_bad, &bad_sectors)) {
    				if (first_bad > sector_nr)
    					good_sectors = first_bad - sector_nr;
    				else {
    					bad_sectors -= (sector_nr - first_bad);
    					if (min_bad == 0 ||
    					    min_bad > bad_sectors)
    						min_bad = bad_sectors;
    				}
    			}
    			if (sector_nr < first_bad) {
    				if (test_bit(WriteMostly, &rdev->flags)) {
    					if (wonly < 0)
    						wonly = i;
    				} else {
    					if (disk < 0)
    						disk = i;
    				}
    				bio->bi_rw = READ;
    				bio->bi_end_io = end_sync_read;
    				read_targets++;
    			}
    		}
    		if (bio->bi_end_io) {
    			atomic_inc(&rdev->nr_pending);
    			bio->bi_sector = sector_nr + rdev->data_offset;
    			bio->bi_bdev = rdev->bdev;
    			bio->bi_private = r1_bio;
    		}
    	}
    	rcu_read_unlock();
    	if (disk < 0)
    		disk = wonly;
    	r1_bio->read_disk = disk;
    
    	if (read_targets == 0 && min_bad > 0) {
    		/* These sectors are bad on all InSync devices, so we
    		 * need to mark them bad on all write targets
    		 */
    		int ok = 1;
    		for (i = 0 ; i < conf->raid_disks ; i++)
    			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
    				mdk_rdev_t *rdev =
    					rcu_dereference(conf->mirrors[i].rdev);
    				ok = rdev_set_badblocks(rdev, sector_nr,
    							min_bad, 0
    					) && ok;
    			}
    		set_bit(MD_CHANGE_DEVS, &mddev->flags);
    		*skipped = 1;
    		put_buf(r1_bio);
    
    		if (!ok) {
    			/* Cannot record the badblocks, so need to
    			 * abort the resync.
    			 * If there are multiple read targets, could just
    			 * fail the really bad ones ???
    			 */
    			conf->recovery_disabled = mddev->recovery_disabled;
    			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
    			return 0;
    		} else
    			return min_bad;
    
    	}
    	if (min_bad > 0 && min_bad < good_sectors) {
    		/* only resync enough to reach the next bad->good
    		 * transition */
    		good_sectors = min_bad;
    	}
    
    	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
    		/* extra read targets are also write targets */
    		write_targets += read_targets-1;
    
    	if (write_targets == 0 || read_targets == 0) {
    		/* There is nowhere to write, so all non-sync
    		 * drives must be failed - so we are finished
    		 */
    		sector_t rv = max_sector - sector_nr;
    		*skipped = 1;
    		put_buf(r1_bio);
    		return rv;
    	}
    
    	if (max_sector > mddev->resync_max)
    		max_sector = mddev->resync_max; /* Don't do IO beyond here */
    	if (max_sector > sector_nr + good_sectors)
    		max_sector = sector_nr + good_sectors;
    	nr_sectors = 0;
    	sync_blocks = 0;
    	do {
    		struct page *page;
    		int len = PAGE_SIZE;
    		if (sector_nr + (len>>9) > max_sector)
    			len = (max_sector - sector_nr) << 9;
    		if (len == 0)
    			break;
    		if (sync_blocks == 0) {
    			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
    					       &sync_blocks, still_degraded) &&
    			    !conf->fullsync &&
    			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
    				break;
    			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
    			if ((len >> 9) > sync_blocks)
    				len = sync_blocks<<9;
    		}
    
    		for (i=0 ; i < conf->raid_disks; i++) {
    			bio = r1_bio->bios[i];
    			if (bio->bi_end_io) {
    				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
    				if (bio_add_page(bio, page, len, 0) == 0) {
    					/* stop here */
    					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
    					while (i > 0) {
    						i--;
    						bio = r1_bio->bios[i];
    						if (bio->bi_end_io==NULL)
    							continue;
    						/* remove last page from this bio */
    						bio->bi_vcnt--;
    						bio->bi_size -= len;
    						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
    					}
    					goto bio_full;
    				}
    			}
    		}
    		nr_sectors += len>>9;
    		sector_nr += len>>9;
    		sync_blocks -= (len>>9);
    	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
     bio_full:
    	r1_bio->sectors = nr_sectors;
    
    	/* For a user-requested sync, we read all readable devices and do a
    	 * compare
    	 */
    	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
    		atomic_set(&r1_bio->remaining, read_targets);
    		for (i=0; i<conf->raid_disks; i++) {
    			bio = r1_bio->bios[i];
    			if (bio->bi_end_io == end_sync_read) {
    				md_sync_acct(bio->bi_bdev, nr_sectors);
    				generic_make_request(bio);
    			}
    		}
    	} else {
    		atomic_set(&r1_bio->remaining, 1);
    		bio = r1_bio->bios[r1_bio->read_disk];
    		md_sync_acct(bio->bi_bdev, nr_sectors);
    		generic_make_request(bio);
    
    	}
    	return nr_sectors;
    }
    
    static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
    {
    	if (sectors)
    		return sectors;
    
    	return mddev->dev_sectors;
    }
    
    static conf_t *setup_conf(mddev_t *mddev)
    {
    	conf_t *conf;
    	int i;
    	mirror_info_t *disk;
    	mdk_rdev_t *rdev;
    	int err = -ENOMEM;
    
    	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
    	if (!conf)
    		goto abort;
    
    	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
    				 GFP_KERNEL);
    	if (!conf->mirrors)
    		goto abort;
    
    	conf->tmppage = alloc_page(GFP_KERNEL);
    	if (!conf->tmppage)
    		goto abort;
    
    	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
    	if (!conf->poolinfo)
    		goto abort;
    	conf->poolinfo->raid_disks = mddev->raid_disks;
    	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
    					  r1bio_pool_free,
    					  conf->poolinfo);
    	if (!conf->r1bio_pool)
    		goto abort;
    
    	conf->poolinfo->mddev = mddev;
    
    	spin_lock_init(&conf->device_lock);
    	list_for_each_entry(rdev, &mddev->disks, same_set) {
    		int disk_idx = rdev->raid_disk;
    		if (disk_idx >= mddev->raid_disks
    		    || disk_idx < 0)
    			continue;
    		disk = conf->mirrors + disk_idx;
    
    		disk->rdev = rdev;
    
    		disk->head_position = 0;
    	}
    	conf->raid_disks = mddev->raid_disks;
    	conf->mddev = mddev;
    	INIT_LIST_HEAD(&conf->retry_list);
    
    	spin_lock_init(&conf->resync_lock);
    	init_waitqueue_head(&conf->wait_barrier);
    
    	bio_list_init(&conf->pending_bio_list);
    
    	conf->last_used = -1;
    	for (i = 0; i < conf->raid_disks; i++) {
    
    		disk = conf->mirrors + i;
    
    		if (!disk->rdev ||
    		    !test_bit(In_sync, &disk->rdev->flags)) {
    			disk->head_position = 0;
    			if (disk->rdev)
    				conf->fullsync = 1;
    		} else if (conf->last_used < 0)
    			/*
    			 * The first working device is used as a
    			 * starting point to read balancing.
    			 */
    			conf->last_used = i;
    	}
    
    	err = -EIO;
    	if (conf->last_used < 0) {
    		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
    		       mdname(mddev));
    		goto abort;
    	}
    	err = -ENOMEM;
    	conf->thread = md_register_thread(raid1d, mddev, NULL);
    	if (!conf->thread) {
    		printk(KERN_ERR
    		       "md/raid1:%s: couldn't allocate thread\n",
    		       mdname(mddev));
    		goto abort;
    	}
    
    	return conf;
    
     abort:
    	if (conf) {
    		if (conf->r1bio_pool)
    			mempool_destroy(conf->r1bio_pool);
    		kfree(conf->mirrors);
    		safe_put_page(conf->tmppage);
    		kfree(conf->poolinfo);
    		kfree(conf);
    	}
    	return ERR_PTR(err);
    }
    
    static int run(mddev_t *mddev)
    {
    	conf_t *conf;
    	int i;
    	mdk_rdev_t *rdev;
    
    	if (mddev->level != 1) {
    		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
    		       mdname(mddev), mddev->level);
    		return -EIO;
    	}
    	if (mddev->reshape_position != MaxSector) {
    		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
    		       mdname(mddev));
    		return -EIO;
    	}
    	/*
    	 * copy the already verified devices into our private RAID1
    	 * bookkeeping area. [whatever we allocate in run(),
    	 * should be freed in stop()]
    	 */
    	if (mddev->private == NULL)
    		conf = setup_conf(mddev);
    	else
    		conf = mddev->private;
    
    	if (IS_ERR(conf))
    		return PTR_ERR(conf);
    
    	list_for_each_entry(rdev, &mddev->disks, same_set) {
    		if (!mddev->gendisk)
    			continue;
    		disk_stack_limits(mddev->gendisk, rdev->bdev,
    				  rdev->data_offset << 9);
    		/* as we don't honour merge_bvec_fn, we must never risk
    		 * violating it, so limit ->max_segments to 1 lying within
    		 * a single page, as a one page request is never in violation.
    		 */
    		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
    			blk_queue_max_segments(mddev->queue, 1);
    			blk_queue_segment_boundary(mddev->queue,
    						   PAGE_CACHE_SIZE - 1);
    		}
    	}
    
    	mddev->degraded = 0;
    	for (i=0; i < conf->raid_disks; i++)
    		if (conf->mirrors[i].rdev == NULL ||
    		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
    		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
    			mddev->degraded++;
    
    	if (conf->raid_disks - mddev->degraded == 1)
    		mddev->recovery_cp = MaxSector;
    
    	if (mddev->recovery_cp != MaxSector)
    		printk(KERN_NOTICE "md/raid1:%s: not clean"
    		       " -- starting background reconstruction\n",
    		       mdname(mddev));
    	printk(KERN_INFO 
    		"md/raid1:%s: active with %d out of %d mirrors\n",
    		mdname(mddev), mddev->raid_disks - mddev->degraded, 
    		mddev->raid_disks);
    
    	/*
    	 * Ok, everything is just fine now
    	 */
    	mddev->thread = conf->thread;
    	conf->thread = NULL;
    	mddev->private = conf;
    
    	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
    
    	if (mddev->queue) {
    		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
    		mddev->queue->backing_dev_info.congested_data = mddev;
    	}
    	return md_integrity_register(mddev);
    }
    
    static int stop(mddev_t *mddev)
    {
    	conf_t *conf = mddev->private;
    	struct bitmap *bitmap = mddev->bitmap;
    
    	/* wait for behind writes to complete */
    	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
    		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
    		       mdname(mddev));
    		/* need to kick something here to make sure I/O goes? */
    		wait_event(bitmap->behind_wait,
    			   atomic_read(&bitmap->behind_writes) == 0);
    	}
    
    	raise_barrier(conf);
    	lower_barrier(conf);
    
    	md_unregister_thread(mddev->thread);
    	mddev->thread = NULL;
    	if (conf->r1bio_pool)
    		mempool_destroy(conf->r1bio_pool);
    	kfree(conf->mirrors);
    	kfree(conf->poolinfo);
    	kfree(conf);
    	mddev->private = NULL;
    	return 0;
    }
    
    static int raid1_resize(mddev_t *mddev, sector_t sectors)
    {
    	/* no resync is happening, and there is enough space
    	 * on all devices, so we can resize.
    	 * We need to make sure resync covers any new space.
    	 * If the array is shrinking we should possibly wait until
    	 * any io in the removed space completes, but it hardly seems
    	 * worth it.
    	 */
    	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
    	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
    		return -EINVAL;
    	set_capacity(mddev->gendisk, mddev->array_sectors);
    	revalidate_disk(mddev->gendisk);
    	if (sectors > mddev->dev_sectors &&
    	    mddev->recovery_cp > mddev->dev_sectors) {
    		mddev->recovery_cp = mddev->dev_sectors;
    		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
    	}
    	mddev->dev_sectors = sectors;
    	mddev->resync_max_sectors = sectors;
    	return 0;
    }
    
    static int raid1_reshape(mddev_t *mddev)
    {
    	/* We need to:
    	 * 1/ resize the r1bio_pool
    	 * 2/ resize conf->mirrors
    	 *
    	 * We allocate a new r1bio_pool if we can.
    	 * Then raise a device barrier and wait until all IO stops.
    	 * Then resize conf->mirrors and swap in the new r1bio pool.
    	 *
    	 * At the same time, we "pack" the devices so that all the missing
    	 * devices have the higher raid_disk numbers.
    	 */
    	mempool_t *newpool, *oldpool;
    	struct pool_info *newpoolinfo;
    	mirror_info_t *newmirrors;
    	conf_t *conf = mddev->private;
    	int cnt, raid_disks;
    	unsigned long flags;
    	int d, d2, err;
    
    	/* Cannot change chunk_size, layout, or level */
    	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
    	    mddev->layout != mddev->new_layout ||
    	    mddev->level != mddev->new_level) {
    		mddev->new_chunk_sectors = mddev->chunk_sectors;
    		mddev->new_layout = mddev->layout;
    		mddev->new_level = mddev->level;
    		return -EINVAL;
    	}
    
    	err = md_allow_write(mddev);
    	if (err)
    		return err;
    
    	raid_disks = mddev->raid_disks + mddev->delta_disks;
    
    	if (raid_disks < conf->raid_disks) {
    		cnt=0;
    		for (d= 0; d < conf->raid_disks; d++)
    			if (conf->mirrors[d].rdev)
    				cnt++;
    		if (cnt > raid_disks)
    			return -EBUSY;
    	}
    
    	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
    	if (!newpoolinfo)
    		return -ENOMEM;
    	newpoolinfo->mddev = mddev;
    	newpoolinfo->raid_disks = raid_disks;
    
    	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
    				 r1bio_pool_free, newpoolinfo);
    	if (!newpool) {
    		kfree(newpoolinfo);
    		return -ENOMEM;
    	}
    	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
    	if (!newmirrors) {
    		kfree(newpoolinfo);
    		mempool_destroy(newpool);
    		return -ENOMEM;
    	}
    
    	raise_barrier(conf);
    
    	/* ok, everything is stopped */
    	oldpool = conf->r1bio_pool;
    	conf->r1bio_pool = newpool;
    
    	for (d = d2 = 0; d < conf->raid_disks; d++) {
    		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
    		if (rdev && rdev->raid_disk != d2) {
    			sysfs_unlink_rdev(mddev, rdev);
    			rdev->raid_disk = d2;
    			sysfs_unlink_rdev(mddev, rdev);
    			if (sysfs_link_rdev(mddev, rdev))
    				printk(KERN_WARNING
    				       "md/raid1:%s: cannot register rd%d\n",
    				       mdname(mddev), rdev->raid_disk);
    		}
    		if (rdev)
    			newmirrors[d2++].rdev = rdev;
    	}
    	kfree(conf->mirrors);
    	conf->mirrors = newmirrors;
    	kfree(conf->poolinfo);
    	conf->poolinfo = newpoolinfo;
    
    	spin_lock_irqsave(&conf->device_lock, flags);
    	mddev->degraded += (raid_disks - conf->raid_disks);
    	spin_unlock_irqrestore(&conf->device_lock, flags);
    	conf->raid_disks = mddev->raid_disks = raid_disks;
    	mddev->delta_disks = 0;
    
    	conf->last_used = 0; /* just make sure it is in-range */
    	lower_barrier(conf);
    
    	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
    	md_wakeup_thread(mddev->thread);
    
    	mempool_destroy(oldpool);
    	return 0;
    }
    
    static void raid1_quiesce(mddev_t *mddev, int state)
    {
    	conf_t *conf = mddev->private;
    
    	switch(state) {
    	case 2: /* wake for suspend */
    		wake_up(&conf->wait_barrier);
    		break;
    	case 1:
    		raise_barrier(conf);
    		break;
    	case 0:
    		lower_barrier(conf);
    		break;
    	}
    }
    
    static void *raid1_takeover(mddev_t *mddev)
    {
    	/* raid1 can take over:
    	 *  raid5 with 2 devices, any layout or chunk size
    	 */
    	if (mddev->level == 5 && mddev->raid_disks == 2) {
    		conf_t *conf;
    		mddev->new_level = 1;
    		mddev->new_layout = 0;
    		mddev->new_chunk_sectors = 0;
    		conf = setup_conf(mddev);
    		if (!IS_ERR(conf))
    			conf->barrier = 1;
    		return conf;
    	}
    	return ERR_PTR(-EINVAL);
    }
    
    static struct mdk_personality raid1_personality =
    {
    	.name		= "raid1",
    	.level		= 1,
    	.owner		= THIS_MODULE,
    	.make_request	= make_request,
    	.run		= run,
    	.stop		= stop,
    	.status		= status,
    	.error_handler	= error,
    	.hot_add_disk	= raid1_add_disk,
    	.hot_remove_disk= raid1_remove_disk,
    	.spare_active	= raid1_spare_active,
    	.sync_request	= sync_request,
    	.resize		= raid1_resize,
    	.size		= raid1_size,
    	.check_reshape	= raid1_reshape,
    	.quiesce	= raid1_quiesce,
    	.takeover	= raid1_takeover,
    };
    
    static int __init raid_init(void)
    {
    	return register_md_personality(&raid1_personality);
    }
    
    static void raid_exit(void)
    {
    	unregister_md_personality(&raid1_personality);
    }
    
    module_init(raid_init);
    module_exit(raid_exit);
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
    MODULE_ALIAS("md-personality-3"); /* RAID1 */
    MODULE_ALIAS("md-raid1");
    MODULE_ALIAS("md-level-1");