diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index e3aff0175d4c65599dfd36f1c82f6d0bb4999619..f6a63f5b3827e9feb1b5dc1aae8e7f1a84c96c56 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -6355,6 +6355,42 @@ static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
 {
 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
+	/*
+	 * XXX: css_offline() would be where we should reparent all
+	 * memory to prepare the cgroup for destruction.  However,
+	 * memcg does not do css_tryget() and res_counter charging
+	 * under the same RCU lock region, which means that charging
+	 * could race with offlining.  Offlining only happens to
+	 * cgroups with no tasks in them but charges can show up
+	 * without any tasks from the swapin path when the target
+	 * memcg is looked up from the swapout record and not from the
+	 * current task as it usually is.  A race like this can leak
+	 * charges and put pages with stale cgroup pointers into
+	 * circulation:
+	 *
+	 * #0                        #1
+	 *                           lookup_swap_cgroup_id()
+	 *                           rcu_read_lock()
+	 *                           mem_cgroup_lookup()
+	 *                           css_tryget()
+	 *                           rcu_read_unlock()
+	 * disable css_tryget()
+	 * call_rcu()
+	 *   offline_css()
+	 *     reparent_charges()
+	 *                           res_counter_charge()
+	 *                           css_put()
+	 *                             css_free()
+	 *                           pc->mem_cgroup = dead memcg
+	 *                           add page to lru
+	 *
+	 * The bulk of the charges are still moved in offline_css() to
+	 * avoid pinning a lot of pages in case a long-term reference
+	 * like a swapout record is deferring the css_free() to long
+	 * after offlining.  But this makes sure we catch any charges
+	 * made after offlining:
+	 */
+	mem_cgroup_reparent_charges(memcg);
 
 	memcg_destroy_kmem(memcg);
 	__mem_cgroup_free(memcg);