diff --git a/kernel/printk/Makefile b/kernel/printk/Makefile
index 4d052fc6bcde77e4d7a1feeec0a86de359ca771b..eee3dc9b60a9aaaa6a62a0d18141163b380224be 100644
--- a/kernel/printk/Makefile
+++ b/kernel/printk/Makefile
@@ -2,3 +2,4 @@
 obj-y	= printk.o
 obj-$(CONFIG_PRINTK)	+= printk_safe.o
 obj-$(CONFIG_A11Y_BRAILLE_CONSOLE)	+= braille.o
+obj-$(CONFIG_PRINTK)	+= printk_ringbuffer.o
diff --git a/kernel/printk/printk_ringbuffer.c b/kernel/printk/printk_ringbuffer.c
new file mode 100644
index 0000000000000000000000000000000000000000..7355ca99e852bd4a3fcd2640be798c264b9306b5
--- /dev/null
+++ b/kernel/printk/printk_ringbuffer.c
@@ -0,0 +1,1687 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/kernel.h>
+#include <linux/irqflags.h>
+#include <linux/string.h>
+#include <linux/errno.h>
+#include <linux/bug.h>
+#include "printk_ringbuffer.h"
+
+/**
+ * DOC: printk_ringbuffer overview
+ *
+ * Data Structure
+ * --------------
+ * The printk_ringbuffer is made up of 3 internal ringbuffers:
+ *
+ *   desc_ring
+ *     A ring of descriptors. A descriptor contains all record meta data
+ *     (sequence number, timestamp, loglevel, etc.) as well as internal state
+ *     information about the record and logical positions specifying where in
+ *     the other ringbuffers the text and dictionary strings are located.
+ *
+ *   text_data_ring
+ *     A ring of data blocks. A data block consists of an unsigned long
+ *     integer (ID) that maps to a desc_ring index followed by the text
+ *     string of the record.
+ *
+ *   dict_data_ring
+ *     A ring of data blocks. A data block consists of an unsigned long
+ *     integer (ID) that maps to a desc_ring index followed by the dictionary
+ *     string of the record.
+ *
+ * The internal state information of a descriptor is the key element to allow
+ * readers and writers to locklessly synchronize access to the data.
+ *
+ * Implementation
+ * --------------
+ *
+ * Descriptor Ring
+ * ~~~~~~~~~~~~~~~
+ * The descriptor ring is an array of descriptors. A descriptor contains all
+ * the meta data of a printk record as well as blk_lpos structs pointing to
+ * associated text and dictionary data blocks (see "Data Rings" below). Each
+ * descriptor is assigned an ID that maps directly to index values of the
+ * descriptor array and has a state. The ID and the state are bitwise combined
+ * into a single descriptor field named @state_var, allowing ID and state to
+ * be synchronously and atomically updated.
+ *
+ * Descriptors have three states:
+ *
+ *   reserved
+ *     A writer is modifying the record.
+ *
+ *   committed
+ *     The record and all its data are complete and available for reading.
+ *
+ *   reusable
+ *     The record exists, but its text and/or dictionary data may no longer
+ *     be available.
+ *
+ * Querying the @state_var of a record requires providing the ID of the
+ * descriptor to query. This can yield a possible fourth (pseudo) state:
+ *
+ *   miss
+ *     The descriptor being queried has an unexpected ID.
+ *
+ * The descriptor ring has a @tail_id that contains the ID of the oldest
+ * descriptor and @head_id that contains the ID of the newest descriptor.
+ *
+ * When a new descriptor should be created (and the ring is full), the tail
+ * descriptor is invalidated by first transitioning to the reusable state and
+ * then invalidating all tail data blocks up to and including the data blocks
+ * associated with the tail descriptor (for text and dictionary rings). Then
+ * @tail_id is advanced, followed by advancing @head_id. And finally the
+ * @state_var of the new descriptor is initialized to the new ID and reserved
+ * state.
+ *
+ * The @tail_id can only be advanced if the new @tail_id would be in the
+ * committed or reusable queried state. This makes it possible that a valid
+ * sequence number of the tail is always available.
+ *
+ * Data Rings
+ * ~~~~~~~~~~
+ * The two data rings (text and dictionary) function identically. They exist
+ * separately so that their buffer sizes can be individually set and they do
+ * not affect one another.
+ *
+ * Data rings are byte arrays composed of data blocks. Data blocks are
+ * referenced by blk_lpos structs that point to the logical position of the
+ * beginning of a data block and the beginning of the next adjacent data
+ * block. Logical positions are mapped directly to index values of the byte
+ * array ringbuffer.
+ *
+ * Each data block consists of an ID followed by the writer data. The ID is
+ * the identifier of a descriptor that is associated with the data block. A
+ * given data block is considered valid if all of the following conditions
+ * are met:
+ *
+ *   1) The descriptor associated with the data block is in the committed
+ *      queried state.
+ *
+ *   2) The blk_lpos struct within the descriptor associated with the data
+ *      block references back to the same data block.
+ *
+ *   3) The data block is within the head/tail logical position range.
+ *
+ * If the writer data of a data block would extend beyond the end of the
+ * byte array, only the ID of the data block is stored at the logical
+ * position and the full data block (ID and writer data) is stored at the
+ * beginning of the byte array. The referencing blk_lpos will point to the
+ * ID before the wrap and the next data block will be at the logical
+ * position adjacent the full data block after the wrap.
+ *
+ * Data rings have a @tail_lpos that points to the beginning of the oldest
+ * data block and a @head_lpos that points to the logical position of the
+ * next (not yet existing) data block.
+ *
+ * When a new data block should be created (and the ring is full), tail data
+ * blocks will first be invalidated by putting their associated descriptors
+ * into the reusable state and then pushing the @tail_lpos forward beyond
+ * them. Then the @head_lpos is pushed forward and is associated with a new
+ * descriptor. If a data block is not valid, the @tail_lpos cannot be
+ * advanced beyond it.
+ *
+ * Usage
+ * -----
+ * Here are some simple examples demonstrating writers and readers. For the
+ * examples a global ringbuffer (test_rb) is available (which is not the
+ * actual ringbuffer used by printk)::
+ *
+ *	DEFINE_PRINTKRB(test_rb, 15, 5, 3);
+ *
+ * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
+ * 1 MiB (2 ^ (15 + 5)) for text data and 256 KiB (2 ^ (15 + 3)) for
+ * dictionary data.
+ *
+ * Sample writer code::
+ *
+ *	const char *dictstr = "dictionary text";
+ *	const char *textstr = "message text";
+ *	struct prb_reserved_entry e;
+ *	struct printk_record r;
+ *
+ *	// specify how much to allocate
+ *	prb_rec_init_wr(&r, strlen(textstr) + 1, strlen(dictstr) + 1);
+ *
+ *	if (prb_reserve(&e, &test_rb, &r)) {
+ *		snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
+ *
+ *		// dictionary allocation may have failed
+ *		if (r.dict_buf)
+ *			snprintf(r.dict_buf, r.dict_buf_size, "%s", dictstr);
+ *
+ *		r.info->ts_nsec = local_clock();
+ *
+ *		prb_commit(&e);
+ *	}
+ *
+ * Sample reader code::
+ *
+ *	struct printk_info info;
+ *	struct printk_record r;
+ *	char text_buf[32];
+ *	char dict_buf[32];
+ *	u64 seq;
+ *
+ *	prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf),
+ *			&dict_buf[0], sizeof(dict_buf));
+ *
+ *	prb_for_each_record(0, &test_rb, &seq, &r) {
+ *		if (info.seq != seq)
+ *			pr_warn("lost %llu records\n", info.seq - seq);
+ *
+ *		if (info.text_len > r.text_buf_size) {
+ *			pr_warn("record %llu text truncated\n", info.seq);
+ *			text_buf[r.text_buf_size - 1] = 0;
+ *		}
+ *
+ *		if (info.dict_len > r.dict_buf_size) {
+ *			pr_warn("record %llu dict truncated\n", info.seq);
+ *			dict_buf[r.dict_buf_size - 1] = 0;
+ *		}
+ *
+ *		pr_info("%llu: %llu: %s;%s\n", info.seq, info.ts_nsec,
+ *			&text_buf[0], info.dict_len ? &dict_buf[0] : "");
+ *	}
+ *
+ * Note that additional less convenient reader functions are available to
+ * allow complex record access.
+ *
+ * ABA Issues
+ * ~~~~~~~~~~
+ * To help avoid ABA issues, descriptors are referenced by IDs (array index
+ * values combined with tagged bits counting array wraps) and data blocks are
+ * referenced by logical positions (array index values combined with tagged
+ * bits counting array wraps). However, on 32-bit systems the number of
+ * tagged bits is relatively small such that an ABA incident is (at least
+ * theoretically) possible. For example, if 4 million maximally sized (1KiB)
+ * printk messages were to occur in NMI context on a 32-bit system, the
+ * interrupted context would not be able to recognize that the 32-bit integer
+ * completely wrapped and thus represents a different data block than the one
+ * the interrupted context expects.
+ *
+ * To help combat this possibility, additional state checking is performed
+ * (such as using cmpxchg() even though set() would suffice). These extra
+ * checks are commented as such and will hopefully catch any ABA issue that
+ * a 32-bit system might experience.
+ *
+ * Memory Barriers
+ * ~~~~~~~~~~~~~~~
+ * Multiple memory barriers are used. To simplify proving correctness and
+ * generating litmus tests, lines of code related to memory barriers
+ * (loads, stores, and the associated memory barriers) are labeled::
+ *
+ *	LMM(function:letter)
+ *
+ * Comments reference the labels using only the "function:letter" part.
+ *
+ * The memory barrier pairs and their ordering are:
+ *
+ *   desc_reserve:D / desc_reserve:B
+ *     push descriptor tail (id), then push descriptor head (id)
+ *
+ *   desc_reserve:D / data_push_tail:B
+ *     push data tail (lpos), then set new descriptor reserved (state)
+ *
+ *   desc_reserve:D / desc_push_tail:C
+ *     push descriptor tail (id), then set new descriptor reserved (state)
+ *
+ *   desc_reserve:D / prb_first_seq:C
+ *     push descriptor tail (id), then set new descriptor reserved (state)
+ *
+ *   desc_reserve:F / desc_read:D
+ *     set new descriptor id and reserved (state), then allow writer changes
+ *
+ *   data_alloc:A / desc_read:D
+ *     set old descriptor reusable (state), then modify new data block area
+ *
+ *   data_alloc:A / data_push_tail:B
+ *     push data tail (lpos), then modify new data block area
+ *
+ *   prb_commit:B / desc_read:B
+ *     store writer changes, then set new descriptor committed (state)
+ *
+ *   data_push_tail:D / data_push_tail:A
+ *     set descriptor reusable (state), then push data tail (lpos)
+ *
+ *   desc_push_tail:B / desc_reserve:D
+ *     set descriptor reusable (state), then push descriptor tail (id)
+ */
+
+#define DATA_SIZE(data_ring)		_DATA_SIZE((data_ring)->size_bits)
+#define DATA_SIZE_MASK(data_ring)	(DATA_SIZE(data_ring) - 1)
+
+#define DESCS_COUNT(desc_ring)		_DESCS_COUNT((desc_ring)->count_bits)
+#define DESCS_COUNT_MASK(desc_ring)	(DESCS_COUNT(desc_ring) - 1)
+
+/* Determine the data array index from a logical position. */
+#define DATA_INDEX(data_ring, lpos)	((lpos) & DATA_SIZE_MASK(data_ring))
+
+/* Determine the desc array index from an ID or sequence number. */
+#define DESC_INDEX(desc_ring, n)	((n) & DESCS_COUNT_MASK(desc_ring))
+
+/* Determine how many times the data array has wrapped. */
+#define DATA_WRAPS(data_ring, lpos)	((lpos) >> (data_ring)->size_bits)
+
+/* Get the logical position at index 0 of the current wrap. */
+#define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
+((lpos) & ~DATA_SIZE_MASK(data_ring))
+
+/* Get the ID for the same index of the previous wrap as the given ID. */
+#define DESC_ID_PREV_WRAP(desc_ring, id) \
+DESC_ID((id) - DESCS_COUNT(desc_ring))
+
+/*
+ * A data block: mapped directly to the beginning of the data block area
+ * specified as a logical position within the data ring.
+ *
+ * @id:   the ID of the associated descriptor
+ * @data: the writer data
+ *
+ * Note that the size of a data block is only known by its associated
+ * descriptor.
+ */
+struct prb_data_block {
+	unsigned long	id;
+	char		data[0];
+};
+
+/*
+ * Return the descriptor associated with @n. @n can be either a
+ * descriptor ID or a sequence number.
+ */
+static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
+{
+	return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
+}
+
+static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
+				       unsigned long begin_lpos)
+{
+	return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
+}
+
+/*
+ * Increase the data size to account for data block meta data plus any
+ * padding so that the adjacent data block is aligned on the ID size.
+ */
+static unsigned int to_blk_size(unsigned int size)
+{
+	struct prb_data_block *db = NULL;
+
+	size += sizeof(*db);
+	size = ALIGN(size, sizeof(db->id));
+	return size;
+}
+
+/*
+ * Sanity checker for reserve size. The ringbuffer code assumes that a data
+ * block does not exceed the maximum possible size that could fit within the
+ * ringbuffer. This function provides that basic size check so that the
+ * assumption is safe.
+ *
+ * Writers are also not allowed to write 0-sized (data-less) records. Such
+ * records are used only internally by the ringbuffer.
+ */
+static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
+{
+	struct prb_data_block *db = NULL;
+
+	/*
+	 * Writers are not allowed to write data-less records. Such records
+	 * are used only internally by the ringbuffer to denote records where
+	 * their data failed to allocate or have been lost.
+	 */
+	if (size == 0)
+		return false;
+
+	/*
+	 * Ensure the alignment padded size could possibly fit in the data
+	 * array. The largest possible data block must still leave room for
+	 * at least the ID of the next block.
+	 */
+	size = to_blk_size(size);
+	if (size > DATA_SIZE(data_ring) - sizeof(db->id))
+		return false;
+
+	return true;
+}
+
+/* The possible responses of a descriptor state-query. */
+enum desc_state {
+	desc_miss,	/* ID mismatch */
+	desc_reserved,	/* reserved, in use by writer */
+	desc_committed, /* committed, writer is done */
+	desc_reusable,	/* free, not yet used by any writer */
+};
+
+/* Query the state of a descriptor. */
+static enum desc_state get_desc_state(unsigned long id,
+				      unsigned long state_val)
+{
+	if (id != DESC_ID(state_val))
+		return desc_miss;
+
+	if (state_val & DESC_REUSE_MASK)
+		return desc_reusable;
+
+	if (state_val & DESC_COMMITTED_MASK)
+		return desc_committed;
+
+	return desc_reserved;
+}
+
+/*
+ * Get a copy of a specified descriptor and its queried state. A descriptor
+ * that is not in the committed or reusable state must be considered garbage
+ * by the reader.
+ */
+static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
+				 unsigned long id, struct prb_desc *desc_out)
+{
+	struct prb_desc *desc = to_desc(desc_ring, id);
+	atomic_long_t *state_var = &desc->state_var;
+	enum desc_state d_state;
+	unsigned long state_val;
+
+	/* Check the descriptor state. */
+	state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
+	d_state = get_desc_state(id, state_val);
+	if (d_state != desc_committed && d_state != desc_reusable)
+		return d_state;
+
+	/*
+	 * Guarantee the state is loaded before copying the descriptor
+	 * content. This avoids copying obsolete descriptor content that might
+	 * not apply to the descriptor state. This pairs with prb_commit:B.
+	 *
+	 * Memory barrier involvement:
+	 *
+	 * If desc_read:A reads from prb_commit:B, then desc_read:C reads
+	 * from prb_commit:A.
+	 *
+	 * Relies on:
+	 *
+	 * WMB from prb_commit:A to prb_commit:B
+	 *    matching
+	 * RMB from desc_read:A to desc_read:C
+	 */
+	smp_rmb(); /* LMM(desc_read:B) */
+
+	/*
+	 * Copy the descriptor data. The data is not valid until the
+	 * state has been re-checked.
+	 */
+	memcpy(desc_out, desc, sizeof(*desc_out)); /* LMM(desc_read:C) */
+
+	/*
+	 * 1. Guarantee the descriptor content is loaded before re-checking
+	 *    the state. This avoids reading an obsolete descriptor state
+	 *    that may not apply to the copied content. This pairs with
+	 *    desc_reserve:F.
+	 *
+	 *    Memory barrier involvement:
+	 *
+	 *    If desc_read:C reads from desc_reserve:G, then desc_read:E
+	 *    reads from desc_reserve:F.
+	 *
+	 *    Relies on:
+	 *
+	 *    WMB from desc_reserve:F to desc_reserve:G
+	 *       matching
+	 *    RMB from desc_read:C to desc_read:E
+	 *
+	 * 2. Guarantee the record data is loaded before re-checking the
+	 *    state. This avoids reading an obsolete descriptor state that may
+	 *    not apply to the copied data. This pairs with data_alloc:A.
+	 *
+	 *    Memory barrier involvement:
+	 *
+	 *    If copy_data:A reads from data_alloc:B, then desc_read:E
+	 *    reads from desc_make_reusable:A.
+	 *
+	 *    Relies on:
+	 *
+	 *    MB from desc_make_reusable:A to data_alloc:B
+	 *       matching
+	 *    RMB from desc_read:C to desc_read:E
+	 *
+	 *    Note: desc_make_reusable:A and data_alloc:B can be different
+	 *          CPUs. However, the data_alloc:B CPU (which performs the
+	 *          full memory barrier) must have previously seen
+	 *          desc_make_reusable:A.
+	 */
+	smp_rmb(); /* LMM(desc_read:D) */
+
+	/* Re-check the descriptor state. */
+	state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
+	return get_desc_state(id, state_val);
+}
+
+/*
+ * Take a specified descriptor out of the committed state by attempting
+ * the transition from committed to reusable. Either this context or some
+ * other context will have been successful.
+ */
+static void desc_make_reusable(struct prb_desc_ring *desc_ring,
+			       unsigned long id)
+{
+	unsigned long val_committed = id | DESC_COMMITTED_MASK;
+	unsigned long val_reusable = val_committed | DESC_REUSE_MASK;
+	struct prb_desc *desc = to_desc(desc_ring, id);
+	atomic_long_t *state_var = &desc->state_var;
+
+	atomic_long_cmpxchg_relaxed(state_var, val_committed,
+				    val_reusable); /* LMM(desc_make_reusable:A) */
+}
+
+/*
+ * Given a data ring (text or dict), put the associated descriptor of each
+ * data block from @lpos_begin until @lpos_end into the reusable state.
+ *
+ * If there is any problem making the associated descriptor reusable, either
+ * the descriptor has not yet been committed or another writer context has
+ * already pushed the tail lpos past the problematic data block. Regardless,
+ * on error the caller can re-load the tail lpos to determine the situation.
+ */
+static bool data_make_reusable(struct printk_ringbuffer *rb,
+			       struct prb_data_ring *data_ring,
+			       unsigned long lpos_begin,
+			       unsigned long lpos_end,
+			       unsigned long *lpos_out)
+{
+	struct prb_desc_ring *desc_ring = &rb->desc_ring;
+	struct prb_data_blk_lpos *blk_lpos;
+	struct prb_data_block *blk;
+	enum desc_state d_state;
+	struct prb_desc desc;
+	unsigned long id;
+
+	/*
+	 * Using the provided @data_ring, point @blk_lpos to the correct
+	 * blk_lpos within the local copy of the descriptor.
+	 */
+	if (data_ring == &rb->text_data_ring)
+		blk_lpos = &desc.text_blk_lpos;
+	else
+		blk_lpos = &desc.dict_blk_lpos;
+
+	/* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
+	while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
+		blk = to_block(data_ring, lpos_begin);
+
+		/*
+		 * Load the block ID from the data block. This is a data race
+		 * against a writer that may have newly reserved this data
+		 * area. If the loaded value matches a valid descriptor ID,
+		 * the blk_lpos of that descriptor will be checked to make
+		 * sure it points back to this data block. If the check fails,
+		 * the data area has been recycled by another writer.
+		 */
+		id = blk->id; /* LMM(data_make_reusable:A) */
+
+		d_state = desc_read(desc_ring, id, &desc); /* LMM(data_make_reusable:B) */
+
+		switch (d_state) {
+		case desc_miss:
+			return false;
+		case desc_reserved:
+			return false;
+		case desc_committed:
+			/*
+			 * This data block is invalid if the descriptor
+			 * does not point back to it.
+			 */
+			if (blk_lpos->begin != lpos_begin)
+				return false;
+			desc_make_reusable(desc_ring, id);
+			break;
+		case desc_reusable:
+			/*
+			 * This data block is invalid if the descriptor
+			 * does not point back to it.
+			 */
+			if (blk_lpos->begin != lpos_begin)
+				return false;
+			break;
+		}
+
+		/* Advance @lpos_begin to the next data block. */
+		lpos_begin = blk_lpos->next;
+	}
+
+	*lpos_out = lpos_begin;
+	return true;
+}
+
+/*
+ * Advance the data ring tail to at least @lpos. This function puts
+ * descriptors into the reusable state if the tail is pushed beyond
+ * their associated data block.
+ */
+static bool data_push_tail(struct printk_ringbuffer *rb,
+			   struct prb_data_ring *data_ring,
+			   unsigned long lpos)
+{
+	unsigned long tail_lpos_new;
+	unsigned long tail_lpos;
+	unsigned long next_lpos;
+
+	/* If @lpos is not valid, there is nothing to do. */
+	if (lpos == INVALID_LPOS)
+		return true;
+
+	/*
+	 * Any descriptor states that have transitioned to reusable due to the
+	 * data tail being pushed to this loaded value will be visible to this
+	 * CPU. This pairs with data_push_tail:D.
+	 *
+	 * Memory barrier involvement:
+	 *
+	 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
+	 * see desc_make_reusable:A.
+	 *
+	 * Relies on:
+	 *
+	 * MB from desc_make_reusable:A to data_push_tail:D
+	 *    matches
+	 * READFROM from data_push_tail:D to data_push_tail:A
+	 *    thus
+	 * READFROM from desc_make_reusable:A to this CPU
+	 */
+	tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
+
+	/*
+	 * Loop until the tail lpos is at or beyond @lpos. This condition
+	 * may already be satisfied, resulting in no full memory barrier
+	 * from data_push_tail:D being performed. However, since this CPU
+	 * sees the new tail lpos, any descriptor states that transitioned to
+	 * the reusable state must already be visible.
+	 */
+	while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
+		/*
+		 * Make all descriptors reusable that are associated with
+		 * data blocks before @lpos.
+		 */
+		if (!data_make_reusable(rb, data_ring, tail_lpos, lpos,
+					&next_lpos)) {
+			/*
+			 * 1. Guarantee the block ID loaded in
+			 *    data_make_reusable() is performed before
+			 *    reloading the tail lpos. The failed
+			 *    data_make_reusable() may be due to a newly
+			 *    recycled data area causing the tail lpos to
+			 *    have been previously pushed. This pairs with
+			 *    data_alloc:A.
+			 *
+			 *    Memory barrier involvement:
+			 *
+			 *    If data_make_reusable:A reads from data_alloc:B,
+			 *    then data_push_tail:C reads from
+			 *    data_push_tail:D.
+			 *
+			 *    Relies on:
+			 *
+			 *    MB from data_push_tail:D to data_alloc:B
+			 *       matching
+			 *    RMB from data_make_reusable:A to
+			 *    data_push_tail:C
+			 *
+			 *    Note: data_push_tail:D and data_alloc:B can be
+			 *          different CPUs. However, the data_alloc:B
+			 *          CPU (which performs the full memory
+			 *          barrier) must have previously seen
+			 *          data_push_tail:D.
+			 *
+			 * 2. Guarantee the descriptor state loaded in
+			 *    data_make_reusable() is performed before
+			 *    reloading the tail lpos. The failed
+			 *    data_make_reusable() may be due to a newly
+			 *    recycled descriptor causing the tail lpos to
+			 *    have been previously pushed. This pairs with
+			 *    desc_reserve:D.
+			 *
+			 *    Memory barrier involvement:
+			 *
+			 *    If data_make_reusable:B reads from
+			 *    desc_reserve:F, then data_push_tail:C reads
+			 *    from data_push_tail:D.
+			 *
+			 *    Relies on:
+			 *
+			 *    MB from data_push_tail:D to desc_reserve:F
+			 *       matching
+			 *    RMB from data_make_reusable:B to
+			 *    data_push_tail:C
+			 *
+			 *    Note: data_push_tail:D and desc_reserve:F can
+			 *          be different CPUs. However, the
+			 *          desc_reserve:F CPU (which performs the
+			 *          full memory barrier) must have previously
+			 *          seen data_push_tail:D.
+			 */
+			smp_rmb(); /* LMM(data_push_tail:B) */
+
+			tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
+							); /* LMM(data_push_tail:C) */
+			if (tail_lpos_new == tail_lpos)
+				return false;
+
+			/* Another CPU pushed the tail. Try again. */
+			tail_lpos = tail_lpos_new;
+			continue;
+		}
+
+		/*
+		 * Guarantee any descriptor states that have transitioned to
+		 * reusable are stored before pushing the tail lpos. A full
+		 * memory barrier is needed since other CPUs may have made
+		 * the descriptor states reusable. This pairs with
+		 * data_push_tail:A.
+		 */
+		if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
+					    next_lpos)) { /* LMM(data_push_tail:D) */
+			break;
+		}
+	}
+
+	return true;
+}
+
+/*
+ * Advance the desc ring tail. This function advances the tail by one
+ * descriptor, thus invalidating the oldest descriptor. Before advancing
+ * the tail, the tail descriptor is made reusable and all data blocks up to
+ * and including the descriptor's data block are invalidated (i.e. the data
+ * ring tail is pushed past the data block of the descriptor being made
+ * reusable).
+ */
+static bool desc_push_tail(struct printk_ringbuffer *rb,
+			   unsigned long tail_id)
+{
+	struct prb_desc_ring *desc_ring = &rb->desc_ring;
+	enum desc_state d_state;
+	struct prb_desc desc;
+
+	d_state = desc_read(desc_ring, tail_id, &desc);
+
+	switch (d_state) {
+	case desc_miss:
+		/*
+		 * If the ID is exactly 1 wrap behind the expected, it is
+		 * in the process of being reserved by another writer and
+		 * must be considered reserved.
+		 */
+		if (DESC_ID(atomic_long_read(&desc.state_var)) ==
+		    DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
+			return false;
+		}
+
+		/*
+		 * The ID has changed. Another writer must have pushed the
+		 * tail and recycled the descriptor already. Success is
+		 * returned because the caller is only interested in the
+		 * specified tail being pushed, which it was.
+		 */
+		return true;
+	case desc_reserved:
+		return false;
+	case desc_committed:
+		desc_make_reusable(desc_ring, tail_id);
+		break;
+	case desc_reusable:
+		break;
+	}
+
+	/*
+	 * Data blocks must be invalidated before their associated
+	 * descriptor can be made available for recycling. Invalidating
+	 * them later is not possible because there is no way to trust
+	 * data blocks once their associated descriptor is gone.
+	 */
+
+	if (!data_push_tail(rb, &rb->text_data_ring, desc.text_blk_lpos.next))
+		return false;
+	if (!data_push_tail(rb, &rb->dict_data_ring, desc.dict_blk_lpos.next))
+		return false;
+
+	/*
+	 * Check the next descriptor after @tail_id before pushing the tail
+	 * to it because the tail must always be in a committed or reusable
+	 * state. The implementation of prb_first_seq() relies on this.
+	 *
+	 * A successful read implies that the next descriptor is less than or
+	 * equal to @head_id so there is no risk of pushing the tail past the
+	 * head.
+	 */
+	d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc); /* LMM(desc_push_tail:A) */
+
+	if (d_state == desc_committed || d_state == desc_reusable) {
+		/*
+		 * Guarantee any descriptor states that have transitioned to
+		 * reusable are stored before pushing the tail ID. This allows
+		 * verifying the recycled descriptor state. A full memory
+		 * barrier is needed since other CPUs may have made the
+		 * descriptor states reusable. This pairs with desc_reserve:D.
+		 */
+		atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
+				    DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
+	} else {
+		/*
+		 * Guarantee the last state load from desc_read() is before
+		 * reloading @tail_id in order to see a new tail ID in the
+		 * case that the descriptor has been recycled. This pairs
+		 * with desc_reserve:D.
+		 *
+		 * Memory barrier involvement:
+		 *
+		 * If desc_push_tail:A reads from desc_reserve:F, then
+		 * desc_push_tail:D reads from desc_push_tail:B.
+		 *
+		 * Relies on:
+		 *
+		 * MB from desc_push_tail:B to desc_reserve:F
+		 *    matching
+		 * RMB from desc_push_tail:A to desc_push_tail:D
+		 *
+		 * Note: desc_push_tail:B and desc_reserve:F can be different
+		 *       CPUs. However, the desc_reserve:F CPU (which performs
+		 *       the full memory barrier) must have previously seen
+		 *       desc_push_tail:B.
+		 */
+		smp_rmb(); /* LMM(desc_push_tail:C) */
+
+		/*
+		 * Re-check the tail ID. The descriptor following @tail_id is
+		 * not in an allowed tail state. But if the tail has since
+		 * been moved by another CPU, then it does not matter.
+		 */
+		if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
+			return false;
+	}
+
+	return true;
+}
+
+/* Reserve a new descriptor, invalidating the oldest if necessary. */
+static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
+{
+	struct prb_desc_ring *desc_ring = &rb->desc_ring;
+	unsigned long prev_state_val;
+	unsigned long id_prev_wrap;
+	struct prb_desc *desc;
+	unsigned long head_id;
+	unsigned long id;
+
+	head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
+
+	do {
+		desc = to_desc(desc_ring, head_id);
+
+		id = DESC_ID(head_id + 1);
+		id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
+
+		/*
+		 * Guarantee the head ID is read before reading the tail ID.
+		 * Since the tail ID is updated before the head ID, this
+		 * guarantees that @id_prev_wrap is never ahead of the tail
+		 * ID. This pairs with desc_reserve:D.
+		 *
+		 * Memory barrier involvement:
+		 *
+		 * If desc_reserve:A reads from desc_reserve:D, then
+		 * desc_reserve:C reads from desc_push_tail:B.
+		 *
+		 * Relies on:
+		 *
+		 * MB from desc_push_tail:B to desc_reserve:D
+		 *    matching
+		 * RMB from desc_reserve:A to desc_reserve:C
+		 *
+		 * Note: desc_push_tail:B and desc_reserve:D can be different
+		 *       CPUs. However, the desc_reserve:D CPU (which performs
+		 *       the full memory barrier) must have previously seen
+		 *       desc_push_tail:B.
+		 */
+		smp_rmb(); /* LMM(desc_reserve:B) */
+
+		if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
+						    )) { /* LMM(desc_reserve:C) */
+			/*
+			 * Make space for the new descriptor by
+			 * advancing the tail.
+			 */
+			if (!desc_push_tail(rb, id_prev_wrap))
+				return false;
+		}
+
+		/*
+		 * 1. Guarantee the tail ID is read before validating the
+		 *    recycled descriptor state. A read memory barrier is
+		 *    sufficient for this. This pairs with desc_push_tail:B.
+		 *
+		 *    Memory barrier involvement:
+		 *
+		 *    If desc_reserve:C reads from desc_push_tail:B, then
+		 *    desc_reserve:E reads from desc_make_reusable:A.
+		 *
+		 *    Relies on:
+		 *
+		 *    MB from desc_make_reusable:A to desc_push_tail:B
+		 *       matching
+		 *    RMB from desc_reserve:C to desc_reserve:E
+		 *
+		 *    Note: desc_make_reusable:A and desc_push_tail:B can be
+		 *          different CPUs. However, the desc_push_tail:B CPU
+		 *          (which performs the full memory barrier) must have
+		 *          previously seen desc_make_reusable:A.
+		 *
+		 * 2. Guarantee the tail ID is stored before storing the head
+		 *    ID. This pairs with desc_reserve:B.
+		 *
+		 * 3. Guarantee any data ring tail changes are stored before
+		 *    recycling the descriptor. Data ring tail changes can
+		 *    happen via desc_push_tail()->data_push_tail(). A full
+		 *    memory barrier is needed since another CPU may have
+		 *    pushed the data ring tails. This pairs with
+		 *    data_push_tail:B.
+		 *
+		 * 4. Guarantee a new tail ID is stored before recycling the
+		 *    descriptor. A full memory barrier is needed since
+		 *    another CPU may have pushed the tail ID. This pairs
+		 *    with desc_push_tail:C and this also pairs with
+		 *    prb_first_seq:C.
+		 */
+	} while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
+					  id)); /* LMM(desc_reserve:D) */
+
+	desc = to_desc(desc_ring, id);
+
+	/*
+	 * If the descriptor has been recycled, verify the old state val.
+	 * See "ABA Issues" about why this verification is performed.
+	 */
+	prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
+	if (prev_state_val &&
+	    prev_state_val != (id_prev_wrap | DESC_COMMITTED_MASK | DESC_REUSE_MASK)) {
+		WARN_ON_ONCE(1);
+		return false;
+	}
+
+	/*
+	 * Assign the descriptor a new ID and set its state to reserved.
+	 * See "ABA Issues" about why cmpxchg() instead of set() is used.
+	 *
+	 * Guarantee the new descriptor ID and state is stored before making
+	 * any other changes. A write memory barrier is sufficient for this.
+	 * This pairs with desc_read:D.
+	 */
+	if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
+				     id | 0)) { /* LMM(desc_reserve:F) */
+		WARN_ON_ONCE(1);
+		return false;
+	}
+
+	/* Now data in @desc can be modified: LMM(desc_reserve:G) */
+
+	*id_out = id;
+	return true;
+}
+
+/* Determine the end of a data block. */
+static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
+				   unsigned long lpos, unsigned int size)
+{
+	unsigned long begin_lpos;
+	unsigned long next_lpos;
+
+	begin_lpos = lpos;
+	next_lpos = lpos + size;
+
+	/* First check if the data block does not wrap. */
+	if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
+		return next_lpos;
+
+	/* Wrapping data blocks store their data at the beginning. */
+	return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
+}
+
+/*
+ * Allocate a new data block, invalidating the oldest data block(s)
+ * if necessary. This function also associates the data block with
+ * a specified descriptor.
+ */
+static char *data_alloc(struct printk_ringbuffer *rb,
+			struct prb_data_ring *data_ring, unsigned int size,
+			struct prb_data_blk_lpos *blk_lpos, unsigned long id)
+{
+	struct prb_data_block *blk;
+	unsigned long begin_lpos;
+	unsigned long next_lpos;
+
+	if (size == 0) {
+		/* Specify a data-less block. */
+		blk_lpos->begin = INVALID_LPOS;
+		blk_lpos->next = INVALID_LPOS;
+		return NULL;
+	}
+
+	size = to_blk_size(size);
+
+	begin_lpos = atomic_long_read(&data_ring->head_lpos);
+
+	do {
+		next_lpos = get_next_lpos(data_ring, begin_lpos, size);
+
+		if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) {
+			/* Failed to allocate, specify a data-less block. */
+			blk_lpos->begin = INVALID_LPOS;
+			blk_lpos->next = INVALID_LPOS;
+			return NULL;
+		}
+
+		/*
+		 * 1. Guarantee any descriptor states that have transitioned
+		 *    to reusable are stored before modifying the newly
+		 *    allocated data area. A full memory barrier is needed
+		 *    since other CPUs may have made the descriptor states
+		 *    reusable. See data_push_tail:A about why the reusable
+		 *    states are visible. This pairs with desc_read:D.
+		 *
+		 * 2. Guarantee any updated tail lpos is stored before
+		 *    modifying the newly allocated data area. Another CPU may
+		 *    be in data_make_reusable() and is reading a block ID
+		 *    from this area. data_make_reusable() can handle reading
+		 *    a garbage block ID value, but then it must be able to
+		 *    load a new tail lpos. A full memory barrier is needed
+		 *    since other CPUs may have updated the tail lpos. This
+		 *    pairs with data_push_tail:B.
+		 */
+	} while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
+					  next_lpos)); /* LMM(data_alloc:A) */
+
+	blk = to_block(data_ring, begin_lpos);
+	blk->id = id; /* LMM(data_alloc:B) */
+
+	if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
+		/* Wrapping data blocks store their data at the beginning. */
+		blk = to_block(data_ring, 0);
+
+		/*
+		 * Store the ID on the wrapped block for consistency.
+		 * The printk_ringbuffer does not actually use it.
+		 */
+		blk->id = id;
+	}
+
+	blk_lpos->begin = begin_lpos;
+	blk_lpos->next = next_lpos;
+
+	return &blk->data[0];
+}
+
+/* Return the number of bytes used by a data block. */
+static unsigned int space_used(struct prb_data_ring *data_ring,
+			       struct prb_data_blk_lpos *blk_lpos)
+{
+	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
+		/* Data block does not wrap. */
+		return (DATA_INDEX(data_ring, blk_lpos->next) -
+			DATA_INDEX(data_ring, blk_lpos->begin));
+	}
+
+	/*
+	 * For wrapping data blocks, the trailing (wasted) space is
+	 * also counted.
+	 */
+	return (DATA_INDEX(data_ring, blk_lpos->next) +
+		DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
+}
+
+/**
+ * prb_reserve() - Reserve space in the ringbuffer.
+ *
+ * @e:  The entry structure to setup.
+ * @rb: The ringbuffer to reserve data in.
+ * @r:  The record structure to allocate buffers for.
+ *
+ * This is the public function available to writers to reserve data.
+ *
+ * The writer specifies the text and dict sizes to reserve by setting the
+ * @text_buf_size and @dict_buf_size fields of @r, respectively. Dictionaries
+ * are optional, so @dict_buf_size is allowed to be 0. To ensure proper
+ * initialization of @r, prb_rec_init_wr() should be used.
+ *
+ * Context: Any context. Disables local interrupts on success.
+ * Return: true if at least text data could be allocated, otherwise false.
+ *
+ * On success, the fields @info, @text_buf, @dict_buf of @r will be set by
+ * this function and should be filled in by the writer before committing. Also
+ * on success, prb_record_text_space() can be used on @e to query the actual
+ * space used for the text data block.
+ *
+ * If the function fails to reserve dictionary space (but all else succeeded),
+ * it will still report success. In that case @dict_buf is set to NULL and
+ * @dict_buf_size is set to 0. Writers must check this before writing to
+ * dictionary space.
+ *
+ * @info->text_len and @info->dict_len will already be set to @text_buf_size
+ * and @dict_buf_size, respectively. If dictionary space reservation fails,
+ * @info->dict_len is set to 0.
+ */
+bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
+		 struct printk_record *r)
+{
+	struct prb_desc_ring *desc_ring = &rb->desc_ring;
+	struct prb_desc *d;
+	unsigned long id;
+
+	if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
+		goto fail;
+
+	/* Records are allowed to not have dictionaries. */
+	if (r->dict_buf_size) {
+		if (!data_check_size(&rb->dict_data_ring, r->dict_buf_size))
+			goto fail;
+	}
+
+	/*
+	 * Descriptors in the reserved state act as blockers to all further
+	 * reservations once the desc_ring has fully wrapped. Disable
+	 * interrupts during the reserve/commit window in order to minimize
+	 * the likelihood of this happening.
+	 */
+	local_irq_save(e->irqflags);
+
+	if (!desc_reserve(rb, &id)) {
+		/* Descriptor reservation failures are tracked. */
+		atomic_long_inc(&rb->fail);
+		local_irq_restore(e->irqflags);
+		goto fail;
+	}
+
+	d = to_desc(desc_ring, id);
+
+	/*
+	 * Set the @e fields here so that prb_commit() can be used if
+	 * text data allocation fails.
+	 */
+	e->rb = rb;
+	e->id = id;
+
+	/*
+	 * Initialize the sequence number if it has "never been set".
+	 * Otherwise just increment it by a full wrap.
+	 *
+	 * @seq is considered "never been set" if it has a value of 0,
+	 * _except_ for @descs[0], which was specially setup by the ringbuffer
+	 * initializer and therefore is always considered as set.
+	 *
+	 * See the "Bootstrap" comment block in printk_ringbuffer.h for
+	 * details about how the initializer bootstraps the descriptors.
+	 */
+	if (d->info.seq == 0 && DESC_INDEX(desc_ring, id) != 0)
+		d->info.seq = DESC_INDEX(desc_ring, id);
+	else
+		d->info.seq += DESCS_COUNT(desc_ring);
+
+	r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size,
+				 &d->text_blk_lpos, id);
+	/* If text data allocation fails, a data-less record is committed. */
+	if (r->text_buf_size && !r->text_buf) {
+		d->info.text_len = 0;
+		d->info.dict_len = 0;
+		prb_commit(e);
+		/* prb_commit() re-enabled interrupts. */
+		goto fail;
+	}
+
+	r->dict_buf = data_alloc(rb, &rb->dict_data_ring, r->dict_buf_size,
+				 &d->dict_blk_lpos, id);
+	/*
+	 * If dict data allocation fails, the caller can still commit
+	 * text. But dictionary information will not be available.
+	 */
+	if (r->dict_buf_size && !r->dict_buf)
+		r->dict_buf_size = 0;
+
+	r->info = &d->info;
+
+	/* Set default values for the sizes. */
+	d->info.text_len = r->text_buf_size;
+	d->info.dict_len = r->dict_buf_size;
+
+	/* Record full text space used by record. */
+	e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
+
+	return true;
+fail:
+	/* Make it clear to the caller that the reserve failed. */
+	memset(r, 0, sizeof(*r));
+	return false;
+}
+
+/**
+ * prb_commit() - Commit (previously reserved) data to the ringbuffer.
+ *
+ * @e: The entry containing the reserved data information.
+ *
+ * This is the public function available to writers to commit data.
+ *
+ * Context: Any context. Enables local interrupts.
+ */
+void prb_commit(struct prb_reserved_entry *e)
+{
+	struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
+	struct prb_desc *d = to_desc(desc_ring, e->id);
+	unsigned long prev_state_val = e->id | 0;
+
+	/* Now the writer has finished all writing: LMM(prb_commit:A) */
+
+	/*
+	 * Set the descriptor as committed. See "ABA Issues" about why
+	 * cmpxchg() instead of set() is used.
+	 *
+	 * Guarantee all record data is stored before the descriptor state
+	 * is stored as committed. A write memory barrier is sufficient for
+	 * this. This pairs with desc_read:B.
+	 */
+	if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
+				     e->id | DESC_COMMITTED_MASK)) { /* LMM(prb_commit:B) */
+		WARN_ON_ONCE(1);
+	}
+
+	/* Restore interrupts, the reserve/commit window is finished. */
+	local_irq_restore(e->irqflags);
+}
+
+/*
+ * Given @blk_lpos, return a pointer to the writer data from the data block
+ * and calculate the size of the data part. A NULL pointer is returned if
+ * @blk_lpos specifies values that could never be legal.
+ *
+ * This function (used by readers) performs strict validation on the lpos
+ * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
+ * triggered if an internal error is detected.
+ */
+static char *get_data(struct prb_data_ring *data_ring,
+		      struct prb_data_blk_lpos *blk_lpos,
+		      unsigned int *data_size)
+{
+	struct prb_data_block *db;
+
+	/* Data-less data block description. */
+	if (blk_lpos->begin == INVALID_LPOS &&
+	    blk_lpos->next == INVALID_LPOS) {
+		return NULL;
+	}
+
+	/* Regular data block: @begin less than @next and in same wrap. */
+	if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
+	    blk_lpos->begin < blk_lpos->next) {
+		db = to_block(data_ring, blk_lpos->begin);
+		*data_size = blk_lpos->next - blk_lpos->begin;
+
+	/* Wrapping data block: @begin is one wrap behind @next. */
+	} else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
+		   DATA_WRAPS(data_ring, blk_lpos->next)) {
+		db = to_block(data_ring, 0);
+		*data_size = DATA_INDEX(data_ring, blk_lpos->next);
+
+	/* Illegal block description. */
+	} else {
+		WARN_ON_ONCE(1);
+		return NULL;
+	}
+
+	/* A valid data block will always be aligned to the ID size. */
+	if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
+	    WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
+		return NULL;
+	}
+
+	/* A valid data block will always have at least an ID. */
+	if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
+		return NULL;
+
+	/* Subtract block ID space from size to reflect data size. */
+	*data_size -= sizeof(db->id);
+
+	return &db->data[0];
+}
+
+/*
+ * Count the number of lines in provided text. All text has at least 1 line
+ * (even if @text_size is 0). Each '\n' processed is counted as an additional
+ * line.
+ */
+static unsigned int count_lines(char *text, unsigned int text_size)
+{
+	unsigned int next_size = text_size;
+	unsigned int line_count = 1;
+	char *next = text;
+
+	while (next_size) {
+		next = memchr(next, '\n', next_size);
+		if (!next)
+			break;
+		line_count++;
+		next++;
+		next_size = text_size - (next - text);
+	}
+
+	return line_count;
+}
+
+/*
+ * Given @blk_lpos, copy an expected @len of data into the provided buffer.
+ * If @line_count is provided, count the number of lines in the data.
+ *
+ * This function (used by readers) performs strict validation on the data
+ * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
+ * triggered if an internal error is detected.
+ */
+static bool copy_data(struct prb_data_ring *data_ring,
+		      struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
+		      unsigned int buf_size, unsigned int *line_count)
+{
+	unsigned int data_size;
+	char *data;
+
+	/* Caller might not want any data. */
+	if ((!buf || !buf_size) && !line_count)
+		return true;
+
+	data = get_data(data_ring, blk_lpos, &data_size);
+	if (!data)
+		return false;
+
+	/*
+	 * Actual cannot be less than expected. It can be more than expected
+	 * because of the trailing alignment padding.
+	 */
+	if (WARN_ON_ONCE(data_size < (unsigned int)len)) {
+		pr_warn_once("wrong data size (%u, expecting %hu) for data: %.*s\n",
+			     data_size, len, data_size, data);
+		return false;
+	}
+
+	/* Caller interested in the line count? */
+	if (line_count)
+		*line_count = count_lines(data, data_size);
+
+	/* Caller interested in the data content? */
+	if (!buf || !buf_size)
+		return true;
+
+	data_size = min_t(u16, buf_size, len);
+
+	if (!WARN_ON_ONCE(!data_size))
+		memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
+	return true;
+}
+
+/*
+ * This is an extended version of desc_read(). It gets a copy of a specified
+ * descriptor. However, it also verifies that the record is committed and has
+ * the sequence number @seq. On success, 0 is returned.
+ *
+ * Error return values:
+ * -EINVAL: A committed record with sequence number @seq does not exist.
+ * -ENOENT: A committed record with sequence number @seq exists, but its data
+ *          is not available. This is a valid record, so readers should
+ *          continue with the next record.
+ */
+static int desc_read_committed_seq(struct prb_desc_ring *desc_ring,
+				   unsigned long id, u64 seq,
+				   struct prb_desc *desc_out)
+{
+	struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
+	enum desc_state d_state;
+
+	d_state = desc_read(desc_ring, id, desc_out);
+
+	/*
+	 * An unexpected @id (desc_miss) or @seq mismatch means the record
+	 * does not exist. A descriptor in the reserved state means the
+	 * record does not yet exist for the reader.
+	 */
+	if (d_state == desc_miss ||
+	    d_state == desc_reserved ||
+	    desc_out->info.seq != seq) {
+		return -EINVAL;
+	}
+
+	/*
+	 * A descriptor in the reusable state may no longer have its data
+	 * available; report it as a data-less record. Or the record may
+	 * actually be a data-less record.
+	 */
+	if (d_state == desc_reusable ||
+	    (blk_lpos->begin == INVALID_LPOS && blk_lpos->next == INVALID_LPOS)) {
+		return -ENOENT;
+	}
+
+	return 0;
+}
+
+/*
+ * Copy the ringbuffer data from the record with @seq to the provided
+ * @r buffer. On success, 0 is returned.
+ *
+ * See desc_read_committed_seq() for error return values.
+ */
+static int prb_read(struct printk_ringbuffer *rb, u64 seq,
+		    struct printk_record *r, unsigned int *line_count)
+{
+	struct prb_desc_ring *desc_ring = &rb->desc_ring;
+	struct prb_desc *rdesc = to_desc(desc_ring, seq);
+	atomic_long_t *state_var = &rdesc->state_var;
+	struct prb_desc desc;
+	unsigned long id;
+	int err;
+
+	/* Extract the ID, used to specify the descriptor to read. */
+	id = DESC_ID(atomic_long_read(state_var));
+
+	/* Get a local copy of the correct descriptor (if available). */
+	err = desc_read_committed_seq(desc_ring, id, seq, &desc);
+
+	/*
+	 * If @r is NULL, the caller is only interested in the availability
+	 * of the record.
+	 */
+	if (err || !r)
+		return err;
+
+	/* If requested, copy meta data. */
+	if (r->info)
+		memcpy(r->info, &desc.info, sizeof(*(r->info)));
+
+	/* Copy text data. If it fails, this is a data-less record. */
+	if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, desc.info.text_len,
+		       r->text_buf, r->text_buf_size, line_count)) {
+		return -ENOENT;
+	}
+
+	/*
+	 * Copy dict data. Although this should not fail, dict data is not
+	 * important. So if it fails, modify the copied meta data to report
+	 * that there is no dict data, thus silently dropping the dict data.
+	 */
+	if (!copy_data(&rb->dict_data_ring, &desc.dict_blk_lpos, desc.info.dict_len,
+		       r->dict_buf, r->dict_buf_size, NULL)) {
+		if (r->info)
+			r->info->dict_len = 0;
+	}
+
+	/* Ensure the record is still committed and has the same @seq. */
+	return desc_read_committed_seq(desc_ring, id, seq, &desc);
+}
+
+/* Get the sequence number of the tail descriptor. */
+static u64 prb_first_seq(struct printk_ringbuffer *rb)
+{
+	struct prb_desc_ring *desc_ring = &rb->desc_ring;
+	enum desc_state d_state;
+	struct prb_desc desc;
+	unsigned long id;
+
+	for (;;) {
+		id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
+
+		d_state = desc_read(desc_ring, id, &desc); /* LMM(prb_first_seq:B) */
+
+		/*
+		 * This loop will not be infinite because the tail is
+		 * _always_ in the committed or reusable state.
+		 */
+		if (d_state == desc_committed || d_state == desc_reusable)
+			break;
+
+		/*
+		 * Guarantee the last state load from desc_read() is before
+		 * reloading @tail_id in order to see a new tail in the case
+		 * that the descriptor has been recycled. This pairs with
+		 * desc_reserve:D.
+		 *
+		 * Memory barrier involvement:
+		 *
+		 * If prb_first_seq:B reads from desc_reserve:F, then
+		 * prb_first_seq:A reads from desc_push_tail:B.
+		 *
+		 * Relies on:
+		 *
+		 * MB from desc_push_tail:B to desc_reserve:F
+		 *    matching
+		 * RMB prb_first_seq:B to prb_first_seq:A
+		 */
+		smp_rmb(); /* LMM(prb_first_seq:C) */
+	}
+
+	return desc.info.seq;
+}
+
+/*
+ * Non-blocking read of a record. Updates @seq to the last committed record
+ * (which may have no data).
+ *
+ * See the description of prb_read_valid() and prb_read_valid_info()
+ * for details.
+ */
+static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
+			    struct printk_record *r, unsigned int *line_count)
+{
+	u64 tail_seq;
+	int err;
+
+	while ((err = prb_read(rb, *seq, r, line_count))) {
+		tail_seq = prb_first_seq(rb);
+
+		if (*seq < tail_seq) {
+			/*
+			 * Behind the tail. Catch up and try again. This
+			 * can happen for -ENOENT and -EINVAL cases.
+			 */
+			*seq = tail_seq;
+
+		} else if (err == -ENOENT) {
+			/* Record exists, but no data available. Skip. */
+			(*seq)++;
+
+		} else {
+			/* Non-existent/non-committed record. Must stop. */
+			return false;
+		}
+	}
+
+	return true;
+}
+
+/**
+ * prb_read_valid() - Non-blocking read of a requested record or (if gone)
+ *                    the next available record.
+ *
+ * @rb:  The ringbuffer to read from.
+ * @seq: The sequence number of the record to read.
+ * @r:   A record data buffer to store the read record to.
+ *
+ * This is the public function available to readers to read a record.
+ *
+ * The reader provides the @info, @text_buf, @dict_buf buffers of @r to be
+ * filled in. Any of the buffer pointers can be set to NULL if the reader
+ * is not interested in that data. To ensure proper initialization of @r,
+ * prb_rec_init_rd() should be used.
+ *
+ * Context: Any context.
+ * Return: true if a record was read, otherwise false.
+ *
+ * On success, the reader must check r->info.seq to see which record was
+ * actually read. This allows the reader to detect dropped records.
+ *
+ * Failure means @seq refers to a not yet written record.
+ */
+bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
+		    struct printk_record *r)
+{
+	return _prb_read_valid(rb, &seq, r, NULL);
+}
+
+/**
+ * prb_read_valid_info() - Non-blocking read of meta data for a requested
+ *                         record or (if gone) the next available record.
+ *
+ * @rb:         The ringbuffer to read from.
+ * @seq:        The sequence number of the record to read.
+ * @info:       A buffer to store the read record meta data to.
+ * @line_count: A buffer to store the number of lines in the record text.
+ *
+ * This is the public function available to readers to read only the
+ * meta data of a record.
+ *
+ * The reader provides the @info, @line_count buffers to be filled in.
+ * Either of the buffer pointers can be set to NULL if the reader is not
+ * interested in that data.
+ *
+ * Context: Any context.
+ * Return: true if a record's meta data was read, otherwise false.
+ *
+ * On success, the reader must check info->seq to see which record meta data
+ * was actually read. This allows the reader to detect dropped records.
+ *
+ * Failure means @seq refers to a not yet written record.
+ */
+bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
+			 struct printk_info *info, unsigned int *line_count)
+{
+	struct printk_record r;
+
+	prb_rec_init_rd(&r, info, NULL, 0, NULL, 0);
+
+	return _prb_read_valid(rb, &seq, &r, line_count);
+}
+
+/**
+ * prb_first_valid_seq() - Get the sequence number of the oldest available
+ *                         record.
+ *
+ * @rb: The ringbuffer to get the sequence number from.
+ *
+ * This is the public function available to readers to see what the
+ * first/oldest valid sequence number is.
+ *
+ * This provides readers a starting point to begin iterating the ringbuffer.
+ *
+ * Context: Any context.
+ * Return: The sequence number of the first/oldest record or, if the
+ *         ringbuffer is empty, 0 is returned.
+ */
+u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
+{
+	u64 seq = 0;
+
+	if (!_prb_read_valid(rb, &seq, NULL, NULL))
+		return 0;
+
+	return seq;
+}
+
+/**
+ * prb_next_seq() - Get the sequence number after the last available record.
+ *
+ * @rb:  The ringbuffer to get the sequence number from.
+ *
+ * This is the public function available to readers to see what the next
+ * newest sequence number available to readers will be.
+ *
+ * This provides readers a sequence number to jump to if all currently
+ * available records should be skipped.
+ *
+ * Context: Any context.
+ * Return: The sequence number of the next newest (not yet available) record
+ *         for readers.
+ */
+u64 prb_next_seq(struct printk_ringbuffer *rb)
+{
+	u64 seq = 0;
+
+	/* Search forward from the oldest descriptor. */
+	while (_prb_read_valid(rb, &seq, NULL, NULL))
+		seq++;
+
+	return seq;
+}
+
+/**
+ * prb_init() - Initialize a ringbuffer to use provided external buffers.
+ *
+ * @rb:       The ringbuffer to initialize.
+ * @text_buf: The data buffer for text data.
+ * @textbits: The size of @text_buf as a power-of-2 value.
+ * @dict_buf: The data buffer for dictionary data.
+ * @dictbits: The size of @dict_buf as a power-of-2 value.
+ * @descs:    The descriptor buffer for ringbuffer records.
+ * @descbits: The count of @descs items as a power-of-2 value.
+ *
+ * This is the public function available to writers to setup a ringbuffer
+ * during runtime using provided buffers.
+ *
+ * This must match the initialization of DEFINE_PRINTKRB().
+ *
+ * Context: Any context.
+ */
+void prb_init(struct printk_ringbuffer *rb,
+	      char *text_buf, unsigned int textbits,
+	      char *dict_buf, unsigned int dictbits,
+	      struct prb_desc *descs, unsigned int descbits)
+{
+	memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
+
+	rb->desc_ring.count_bits = descbits;
+	rb->desc_ring.descs = descs;
+	atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
+	atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
+
+	rb->text_data_ring.size_bits = textbits;
+	rb->text_data_ring.data = text_buf;
+	atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
+	atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
+
+	rb->dict_data_ring.size_bits = dictbits;
+	rb->dict_data_ring.data = dict_buf;
+	atomic_long_set(&rb->dict_data_ring.head_lpos, BLK0_LPOS(dictbits));
+	atomic_long_set(&rb->dict_data_ring.tail_lpos, BLK0_LPOS(dictbits));
+
+	atomic_long_set(&rb->fail, 0);
+
+	descs[0].info.seq = -(u64)_DESCS_COUNT(descbits);
+
+	descs[_DESCS_COUNT(descbits) - 1].info.seq = 0;
+	atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
+	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = INVALID_LPOS;
+	descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = INVALID_LPOS;
+	descs[_DESCS_COUNT(descbits) - 1].dict_blk_lpos.begin = INVALID_LPOS;
+	descs[_DESCS_COUNT(descbits) - 1].dict_blk_lpos.next = INVALID_LPOS;
+}
+
+/**
+ * prb_record_text_space() - Query the full actual used ringbuffer space for
+ *                           the text data of a reserved entry.
+ *
+ * @e: The successfully reserved entry to query.
+ *
+ * This is the public function available to writers to see how much actual
+ * space is used in the ringbuffer to store the text data of the specified
+ * entry.
+ *
+ * This function is only valid if @e has been successfully reserved using
+ * prb_reserve().
+ *
+ * Context: Any context.
+ * Return: The size in bytes used by the text data of the associated record.
+ */
+unsigned int prb_record_text_space(struct prb_reserved_entry *e)
+{
+	return e->text_space;
+}
diff --git a/kernel/printk/printk_ringbuffer.h b/kernel/printk/printk_ringbuffer.h
new file mode 100644
index 0000000000000000000000000000000000000000..3e46a7423c13252ea709dcf4d1488fd3d5077d68
--- /dev/null
+++ b/kernel/printk/printk_ringbuffer.h
@@ -0,0 +1,399 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef _KERNEL_PRINTK_RINGBUFFER_H
+#define _KERNEL_PRINTK_RINGBUFFER_H
+
+#include <linux/atomic.h>
+
+/*
+ * Meta information about each stored message.
+ *
+ * All fields are set and used by the printk code except for
+ * @seq, @text_len, @dict_len, which are set and/or modified
+ * by the ringbuffer code.
+ */
+struct printk_info {
+	u64	seq;		/* sequence number */
+	u64	ts_nsec;	/* timestamp in nanoseconds */
+	u16	text_len;	/* length of text message */
+	u16	dict_len;	/* length of dictionary message */
+	u8	facility;	/* syslog facility */
+	u8	flags:5;	/* internal record flags */
+	u8	level:3;	/* syslog level */
+	u32	caller_id;	/* thread id or processor id */
+};
+
+/*
+ * A structure providing the buffers, used by writers and readers.
+ *
+ * Writers:
+ * Using prb_rec_init_wr(), a writer sets @text_buf_size and @dict_buf_size
+ * before calling prb_reserve(). On success, prb_reserve() sets @info,
+ * @text_buf, @dict_buf to buffers reserved for that writer.
+ *
+ * Readers:
+ * Using prb_rec_init_rd(), a reader sets all fields before calling
+ * prb_read_valid(). Note that the reader provides the @info, @text_buf,
+ * @dict_buf buffers. On success, the struct pointed to by @info will be
+ * filled and the char arrays pointed to by @text_buf and @dict_buf will
+ * be filled with text and dict data.
+ */
+struct printk_record {
+	struct printk_info	*info;
+	char			*text_buf;
+	char			*dict_buf;
+	unsigned int		text_buf_size;
+	unsigned int		dict_buf_size;
+};
+
+/* Specifies the logical position and span of a data block. */
+struct prb_data_blk_lpos {
+	unsigned long	begin;
+	unsigned long	next;
+};
+
+/*
+ * A descriptor: the complete meta-data for a record.
+ *
+ * @state_var: A bitwise combination of descriptor ID and descriptor state.
+ */
+struct prb_desc {
+	struct printk_info		info;
+	atomic_long_t			state_var;
+	struct prb_data_blk_lpos	text_blk_lpos;
+	struct prb_data_blk_lpos	dict_blk_lpos;
+};
+
+/* A ringbuffer of "ID + data" elements. */
+struct prb_data_ring {
+	unsigned int	size_bits;
+	char		*data;
+	atomic_long_t	head_lpos;
+	atomic_long_t	tail_lpos;
+};
+
+/* A ringbuffer of "struct prb_desc" elements. */
+struct prb_desc_ring {
+	unsigned int		count_bits;
+	struct prb_desc		*descs;
+	atomic_long_t		head_id;
+	atomic_long_t		tail_id;
+};
+
+/*
+ * The high level structure representing the printk ringbuffer.
+ *
+ * @fail: Count of failed prb_reserve() calls where not even a data-less
+ *        record was created.
+ */
+struct printk_ringbuffer {
+	struct prb_desc_ring	desc_ring;
+	struct prb_data_ring	text_data_ring;
+	struct prb_data_ring	dict_data_ring;
+	atomic_long_t		fail;
+};
+
+/*
+ * Used by writers as a reserve/commit handle.
+ *
+ * @rb:         Ringbuffer where the entry is reserved.
+ * @irqflags:   Saved irq flags to restore on entry commit.
+ * @id:         ID of the reserved descriptor.
+ * @text_space: Total occupied buffer space in the text data ring, including
+ *              ID, alignment padding, and wrapping data blocks.
+ *
+ * This structure is an opaque handle for writers. Its contents are only
+ * to be used by the ringbuffer implementation.
+ */
+struct prb_reserved_entry {
+	struct printk_ringbuffer	*rb;
+	unsigned long			irqflags;
+	unsigned long			id;
+	unsigned int			text_space;
+};
+
+#define _DATA_SIZE(sz_bits)		(1UL << (sz_bits))
+#define _DESCS_COUNT(ct_bits)		(1U << (ct_bits))
+#define DESC_SV_BITS			(sizeof(unsigned long) * 8)
+#define DESC_COMMITTED_MASK		(1UL << (DESC_SV_BITS - 1))
+#define DESC_REUSE_MASK			(1UL << (DESC_SV_BITS - 2))
+#define DESC_FLAGS_MASK			(DESC_COMMITTED_MASK | DESC_REUSE_MASK)
+#define DESC_ID_MASK			(~DESC_FLAGS_MASK)
+#define DESC_ID(sv)			((sv) & DESC_ID_MASK)
+#define INVALID_LPOS			1
+
+#define INVALID_BLK_LPOS	\
+{				\
+	.begin	= INVALID_LPOS,	\
+	.next	= INVALID_LPOS,	\
+}
+
+/*
+ * Descriptor Bootstrap
+ *
+ * The descriptor array is minimally initialized to allow immediate usage
+ * by readers and writers. The requirements that the descriptor array
+ * initialization must satisfy:
+ *
+ *   Req1
+ *     The tail must point to an existing (committed or reusable) descriptor.
+ *     This is required by the implementation of prb_first_seq().
+ *
+ *   Req2
+ *     Readers must see that the ringbuffer is initially empty.
+ *
+ *   Req3
+ *     The first record reserved by a writer is assigned sequence number 0.
+ *
+ * To satisfy Req1, the tail initially points to a descriptor that is
+ * minimally initialized (having no data block, i.e. data-less with the
+ * data block's lpos @begin and @next values set to INVALID_LPOS).
+ *
+ * To satisfy Req2, the initial tail descriptor is initialized to the
+ * reusable state. Readers recognize reusable descriptors as existing
+ * records, but skip over them.
+ *
+ * To satisfy Req3, the last descriptor in the array is used as the initial
+ * head (and tail) descriptor. This allows the first record reserved by a
+ * writer (head + 1) to be the first descriptor in the array. (Only the first
+ * descriptor in the array could have a valid sequence number of 0.)
+ *
+ * The first time a descriptor is reserved, it is assigned a sequence number
+ * with the value of the array index. A "first time reserved" descriptor can
+ * be recognized because it has a sequence number of 0 but does not have an
+ * index of 0. (Only the first descriptor in the array could have a valid
+ * sequence number of 0.) After the first reservation, all future reservations
+ * (recycling) simply involve incrementing the sequence number by the array
+ * count.
+ *
+ *   Hack #1
+ *     Only the first descriptor in the array is allowed to have the sequence
+ *     number 0. In this case it is not possible to recognize if it is being
+ *     reserved the first time (set to index value) or has been reserved
+ *     previously (increment by the array count). This is handled by _always_
+ *     incrementing the sequence number by the array count when reserving the
+ *     first descriptor in the array. In order to satisfy Req3, the sequence
+ *     number of the first descriptor in the array is initialized to minus
+ *     the array count. Then, upon the first reservation, it is incremented
+ *     to 0, thus satisfying Req3.
+ *
+ *   Hack #2
+ *     prb_first_seq() can be called at any time by readers to retrieve the
+ *     sequence number of the tail descriptor. However, due to Req2 and Req3,
+ *     initially there are no records to report the sequence number of
+ *     (sequence numbers are u64 and there is nothing less than 0). To handle
+ *     this, the sequence number of the initial tail descriptor is initialized
+ *     to 0. Technically this is incorrect, because there is no record with
+ *     sequence number 0 (yet) and the tail descriptor is not the first
+ *     descriptor in the array. But it allows prb_read_valid() to correctly
+ *     report the existence of a record for _any_ given sequence number at all
+ *     times. Bootstrapping is complete when the tail is pushed the first
+ *     time, thus finally pointing to the first descriptor reserved by a
+ *     writer, which has the assigned sequence number 0.
+ */
+
+/*
+ * Initiating Logical Value Overflows
+ *
+ * Both logical position (lpos) and ID values can be mapped to array indexes
+ * but may experience overflows during the lifetime of the system. To ensure
+ * that printk_ringbuffer can handle the overflows for these types, initial
+ * values are chosen that map to the correct initial array indexes, but will
+ * result in overflows soon.
+ *
+ *   BLK0_LPOS
+ *     The initial @head_lpos and @tail_lpos for data rings. It is at index
+ *     0 and the lpos value is such that it will overflow on the first wrap.
+ *
+ *   DESC0_ID
+ *     The initial @head_id and @tail_id for the desc ring. It is at the last
+ *     index of the descriptor array (see Req3 above) and the ID value is such
+ *     that it will overflow on the second wrap.
+ */
+#define BLK0_LPOS(sz_bits)	(-(_DATA_SIZE(sz_bits)))
+#define DESC0_ID(ct_bits)	DESC_ID(-(_DESCS_COUNT(ct_bits) + 1))
+#define DESC0_SV(ct_bits)	(DESC_COMMITTED_MASK | DESC_REUSE_MASK | DESC0_ID(ct_bits))
+
+/*
+ * Define a ringbuffer with an external text data buffer. The same as
+ * DEFINE_PRINTKRB() but requires specifying an external buffer for the
+ * text data.
+ *
+ * Note: The specified external buffer must be of the size:
+ *       2 ^ (descbits + avgtextbits)
+ */
+#define _DEFINE_PRINTKRB(name, descbits, avgtextbits, avgdictbits, text_buf)			\
+static char _##name##_dict[1U << ((avgdictbits) + (descbits))]					\
+			__aligned(__alignof__(unsigned long));					\
+static struct prb_desc _##name##_descs[_DESCS_COUNT(descbits)] = {				\
+	/* this will be the first record reserved by a writer */				\
+	[0] = {											\
+		.info = {									\
+			/* will be incremented to 0 on the first reservation */			\
+			.seq = -(u64)_DESCS_COUNT(descbits),					\
+		},										\
+	},											\
+	/* the initial head and tail */								\
+	[_DESCS_COUNT(descbits) - 1] = {							\
+		.info = {									\
+			/* reports the first seq value during the bootstrap phase */		\
+			.seq = 0,								\
+		},										\
+		/* reusable */									\
+		.state_var	= ATOMIC_INIT(DESC0_SV(descbits)),				\
+		/* no associated data block */							\
+		.text_blk_lpos	= INVALID_BLK_LPOS,						\
+		.dict_blk_lpos	= INVALID_BLK_LPOS,						\
+	},											\
+};												\
+static struct printk_ringbuffer name = {							\
+	.desc_ring = {										\
+		.count_bits	= descbits,							\
+		.descs		= &_##name##_descs[0],						\
+		.head_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
+		.tail_id	= ATOMIC_INIT(DESC0_ID(descbits)),				\
+	},											\
+	.text_data_ring = {									\
+		.size_bits	= (avgtextbits) + (descbits),					\
+		.data		= text_buf,							\
+		.head_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
+		.tail_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
+	},											\
+	.dict_data_ring = {									\
+		.size_bits	= (avgtextbits) + (descbits),					\
+		.data		= &_##name##_dict[0],						\
+		.head_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
+		.tail_lpos	= ATOMIC_LONG_INIT(BLK0_LPOS((avgtextbits) + (descbits))),	\
+	},											\
+	.fail			= ATOMIC_LONG_INIT(0),						\
+}
+
+/**
+ * DEFINE_PRINTKRB() - Define a ringbuffer.
+ *
+ * @name:        The name of the ringbuffer variable.
+ * @descbits:    The number of descriptors as a power-of-2 value.
+ * @avgtextbits: The average text data size per record as a power-of-2 value.
+ * @avgdictbits: The average dictionary data size per record as a
+ *               power-of-2 value.
+ *
+ * This is a macro for defining a ringbuffer and all internal structures
+ * such that it is ready for immediate use. See _DEFINE_PRINTKRB() for a
+ * variant where the text data buffer can be specified externally.
+ */
+#define DEFINE_PRINTKRB(name, descbits, avgtextbits, avgdictbits)		\
+static char _##name##_text[1U << ((avgtextbits) + (descbits))]			\
+			__aligned(__alignof__(unsigned long));			\
+_DEFINE_PRINTKRB(name, descbits, avgtextbits, avgdictbits, &_##name##_text[0])
+
+/* Writer Interface */
+
+/**
+ * prb_rec_init_wd() - Initialize a buffer for writing records.
+ *
+ * @r:             The record to initialize.
+ * @text_buf_size: The needed text buffer size.
+ * @dict_buf_size: The needed dictionary buffer size.
+ *
+ * Initialize all the fields that a writer is interested in. If
+ * @dict_buf_size is 0, a dictionary buffer will not be reserved.
+ * @text_buf_size must be greater than 0.
+ *
+ * Note that although @dict_buf_size may be initialized to non-zero,
+ * its value must be rechecked after a successful call to prb_reserve()
+ * to verify a dictionary buffer was actually reserved. Dictionary buffer
+ * reservation is allowed to fail.
+ */
+static inline void prb_rec_init_wr(struct printk_record *r,
+				   unsigned int text_buf_size,
+				   unsigned int dict_buf_size)
+{
+	r->info = NULL;
+	r->text_buf = NULL;
+	r->dict_buf = NULL;
+	r->text_buf_size = text_buf_size;
+	r->dict_buf_size = dict_buf_size;
+}
+
+bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
+		 struct printk_record *r);
+void prb_commit(struct prb_reserved_entry *e);
+
+void prb_init(struct printk_ringbuffer *rb,
+	      char *text_buf, unsigned int text_buf_size,
+	      char *dict_buf, unsigned int dict_buf_size,
+	      struct prb_desc *descs, unsigned int descs_count_bits);
+unsigned int prb_record_text_space(struct prb_reserved_entry *e);
+
+/* Reader Interface */
+
+/**
+ * prb_rec_init_rd() - Initialize a buffer for reading records.
+ *
+ * @r:             The record to initialize.
+ * @info:          A buffer to store record meta-data.
+ * @text_buf:      A buffer to store text data.
+ * @text_buf_size: The size of @text_buf.
+ * @dict_buf:      A buffer to store dictionary data.
+ * @dict_buf_size: The size of @dict_buf.
+ *
+ * Initialize all the fields that a reader is interested in. All arguments
+ * (except @r) are optional. Only record data for arguments that are
+ * non-NULL or non-zero will be read.
+ */
+static inline void prb_rec_init_rd(struct printk_record *r,
+				   struct printk_info *info,
+				   char *text_buf, unsigned int text_buf_size,
+				   char *dict_buf, unsigned int dict_buf_size)
+{
+	r->info = info;
+	r->text_buf = text_buf;
+	r->dict_buf = dict_buf;
+	r->text_buf_size = text_buf_size;
+	r->dict_buf_size = dict_buf_size;
+}
+
+/**
+ * prb_for_each_record() - Iterate over the records of a ringbuffer.
+ *
+ * @from: The sequence number to begin with.
+ * @rb:   The ringbuffer to iterate over.
+ * @s:    A u64 to store the sequence number on each iteration.
+ * @r:    A printk_record to store the record on each iteration.
+ *
+ * This is a macro for conveniently iterating over a ringbuffer.
+ * Note that @s may not be the sequence number of the record on each
+ * iteration. For the sequence number, @r->info->seq should be checked.
+ *
+ * Context: Any context.
+ */
+#define prb_for_each_record(from, rb, s, r) \
+for ((s) = from; prb_read_valid(rb, s, r); (s) = (r)->info->seq + 1)
+
+/**
+ * prb_for_each_info() - Iterate over the meta data of a ringbuffer.
+ *
+ * @from: The sequence number to begin with.
+ * @rb:   The ringbuffer to iterate over.
+ * @s:    A u64 to store the sequence number on each iteration.
+ * @i:    A printk_info to store the record meta data on each iteration.
+ * @lc:   An unsigned int to store the text line count of each record.
+ *
+ * This is a macro for conveniently iterating over a ringbuffer.
+ * Note that @s may not be the sequence number of the record on each
+ * iteration. For the sequence number, @r->info->seq should be checked.
+ *
+ * Context: Any context.
+ */
+#define prb_for_each_info(from, rb, s, i, lc) \
+for ((s) = from; prb_read_valid_info(rb, s, i, lc); (s) = (i)->seq + 1)
+
+bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
+		    struct printk_record *r);
+bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
+			 struct printk_info *info, unsigned int *line_count);
+
+u64 prb_first_valid_seq(struct printk_ringbuffer *rb);
+u64 prb_next_seq(struct printk_ringbuffer *rb);
+
+#endif /* _KERNEL_PRINTK_RINGBUFFER_H */